Unit 1: Engineering Design

Unit code: K/615/1475
Unit type: Core
Unit level: 4
Credit value: 15

Introduction

The tremendous possibilities of the techniques and processes developed by engineers can only be realised by great design. Design turns an idea into a useful artefact, the problem into a solution, or something ugly and inefficient into an elegant, desirable and cost effective everyday object. Without a sound understanding of the design process the engineer works in isolation without the links between theory and the needs of the end user.

The aim of this unit is to introduce students to the methodical steps that engineers use in creating functional products and processes; from a design brief to the work, and the stages involved in identifying and justifying a solution to a given engineering need.

Among the topics included in this unit are: Gantt charts and critical path analysis, stakeholder requirements, market analysis, design process management, modelling and prototyping, manufacturability, reliability life cycle, safety and risk, management, calculations, drawings and concepts and ergonomics.

On successful completion of this unit students will be able to prepare an engineering design specification that satisfies stakeholders’ requirements, implement best practice when analysing and evaluating possible design solutions, prepare a written technical design report, and present their finalised design to a customer or audience.

Learning Outcomes

By the end of this unit students will be able to:

1. Plan a design solution and prepare an engineering design specification in response to a stakeholder’s design brief and requirements.
2. Formulate possible technical solutions to address the student-prepared design specification.
3. Prepare an industry-standard engineering technical design report.
4. Present to an audience a design solution based on the design report and evaluate the solution/presentation.
Essential Content

LO1 **Plan a design solution and prepare an engineering design specification in response to a stakeholder’s design brief and requirements**

Planning techniques used to prepare a design specification:
- Definition of client’s/users objectives, needs and constraints
- Definition of design constraints, function, specification, milestones
- Planning the design task: Flow charts, Gantt charts, network and critical path analysis necessary in the design process
- Use of relevant technical/engineering/industry standards within the design process

Design process:
- Process development, steps to consider from start to finish
- The cycle from design to manufacture
- Three- and five-stage design process
- Vocabulary used in engineering design

Stage of the design process which includes:
- Analysing the situation, problem statement, define tasks and outputs, create the design concept, research the problem and write a specification
- Suggest possible solutions, select a preferred solution, prepare working drawings, construct a prototype, test and evaluate the design against objectives, design communication (write a report)

Customer/stakeholder requirements:
- Converting customer request to a list of objectives and constraints
- Interpretation of design requirements
- Market analysis of existing products and competitors
- Aspects of innovation and performance management in decision-making

LO2 **Formulate possible technical solutions to address the student-prepared design specification**

Conceptual design and evaluating possible solutions:
- Modelling, prototyping and simulation using industry standard software, (e.g. AutoCAD, Catia, SolidWorks, Creo) on high specification computers
- Use of evaluation and analytical tools, e.g. cause and effect diagrams, CAD, knowledge-based engineering
LO3 **Prepare an industry-standard engineering technical design report**

Managing the design process:
Recognising limitations including cost, physical processes, availability of material/components and skills, timing and scheduling

Working to specifications and standards, including:
The role of compliance checking, feasibility assessment and commercial viability of product design through testing and validation

Design for testing, including:
Material selection to suit selected processes and technologies
Consideration of manufacturability, reliability, life cycle and environmental issues
The importance of safety, risk management and ergonomics

Conceptual design and effective tools:
Technologies and manufacturing processes used in order to transfer engineering designs into finished products

LO4 **Present to an audience a design solution based on the design report and evaluate the solution/presentation**

Communication and post-presentation review:
Selection of presentation tools
Analysis of presentation feedback
Strategies for improvement based on feedback
Learning Outcomes and Assessment Criteria

<table>
<thead>
<tr>
<th>LO1</th>
<th>Plan a design solution and prepare an engineering design specification in response to a stakeholder’s design brief and requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Merit</td>
</tr>
<tr>
<td>P1 Produce a design specification from a given design brief</td>
<td>M1 Evaluate potential planning techniques, presenting a case for the method chosen</td>
</tr>
<tr>
<td>P2 Explain the influence of the stakeholder’s design brief and requirements in the preparation of the design specification</td>
<td>M2 Demonstrate critical path analysis techniques in design project scheduling/planning and explain its use</td>
</tr>
<tr>
<td>P3 Produce a design project schedule with a graphical illustration of the planned activities</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LO2</th>
<th>Formulate possible technical solutions to address the student-prepared design specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Merit</td>
</tr>
<tr>
<td>P4 Explore industry standard evaluation and analytical tools in formulating possible technical solutions</td>
<td>M3 Apply the principles of modelling/simulation/prototyping, using appropriate software, to develop appropriate design solutions</td>
</tr>
<tr>
<td>P5 Use appropriate design techniques to produce possible design solution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LO3</th>
<th>Prepare an industry-standard engineering technical design report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Merit</td>
</tr>
<tr>
<td>P6 Prepare an industry-standard engineering technical design report</td>
<td>M4 Explain the role of design specifications and standards in producing a finished product</td>
</tr>
<tr>
<td>P7 Assess the presented technical design and identify any potential limitations it may have</td>
<td>M5 Identify any compliance, safety and risk management issues present in the chosen solution</td>
</tr>
<tr>
<td>Pass</td>
<td>Merit</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>LO4 Present to an audience a design solution based on the design report and evaluate the solution/presentation</td>
<td>D4 Justify potential improvements to the presented design solution, based on reflection and/or feedback obtained from the presentation</td>
</tr>
<tr>
<td>P8 Present the recommended design solution to the identified audience</td>
<td>M6 Reflect on effectiveness of communication strategy in presenting the solution</td>
</tr>
<tr>
<td>P9 Explain possible communication strategies and presentation methods that could be used to inform the stakeholders of the recommended solution</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Resources

Textbooks

Websites
www.epsrc.ac.uk Engineering and Physical Sciences Research Council (General Reference)
www.imeche.org Institution of Mechanical Engineers (General Reference)

Links
This unit links to the following related units:

Unit 23: Computer Aided Design and Manufacture (CAD/CAM)

Unit 34: Research Project