

Contents

INTRODU	CTION	3
GUIDANC	Ε	3
3.1 Sta	indards	5
3.1.1	The basic dimensions in the physical world and the corresponding SI base units	5
3.1.2	SI derived units with special names and symbols	6
3.1.3	SI prefixes and their representation	6
3.1.4	Investigation using the scientific method to gather appropriate data	7
3.2 Sta	indards for Measurement	9
3.2.1	Defining Measurement Systems	9
3.2.2	Fittings	9
3.2.3	Threads	11
3.3 Sta	andards for Management	13
3.3.1	ISO 9000	13
3.3.2	ISO 14000	
3.3.3	European Foundation for Quality Management	21
4.1 To	tal Quality Management	24
4.1.1	Principles of TQM	24
4.1.2	ISO 9001	24
4.2 Six	Sigma	26
4.2.1	Project	26
4.2.2	Training	26
4.2.3	Building Teams	26
4.2.4	Plan	26
4.2.5	Implementation	26
4.2.6	Evaluation	26
4.3 Ka	zen	27
4.3.1	The 5S Philosophy of Kaizen	29

INTRODUCTION

Determine the role of standards in improving efficiency, meeting customer requirements and opening up new opportunities for trade

- The history of standards.
- The role of standards and their importance in enabling and supporting trade and industry.
- Standards for measurement.
- International Standards for management (ISO 9000, 14000, 18000).
- European Foundation for Quality Management (EFQM) as an aid to developing strategic competitive advantage.

Analyse the importance of Total Quality Management and continuous improvement in manufacturing environments

- The importance of quality to industry: how it underpins the ability to improve efficiency, meet customer requirements and improve competitiveness.
- Principles, tools and techniques of Total Quality Management (TQM).
- Understanding and implementation of Six Sigma.

GUIDANCE

This document is prepared to break the unit material down into bite size chunks. You will see the learning outcomes above treated in their own sections. Therein you will encounter the following structures;

Purpose	Explains why you need to study the current section of material. Quite often learners are put off by material which does not initially seem to be relevant to a topic or
	profession. Once you understand the importance of new learning or theory you will embrace the concepts more readily.
Theory	Conveys new material to you in a straightforward fashion. To support the treatments in this section you are strongly advised to follow the given hyperlinks, which may be useful documents or applications on the web.
Example	The examples/worked examples are presented in a knowledge-building order. Make sure you follow them all through. If you are feeling confident then you might like to treat an example as a question, in which case cover it up and have a go yourself. Many of the examples given resemble assignment questions which will come your way, so follow them through diligently.
Question	Questions should not be avoided if you are determined to learn. Please do take the time to tackle each of the given questions, in the order in which they are presented. The order is important, as further knowledge and confidence is built upon previous knowledge and confidence. As an Online Learner it is important that the answers to

questions are immediately available to you. Contact your Unit Tutor if you need help.

Challenge

Video

You can really cement your new knowledge by undertaking the challenges. A challenge could be to download software and perform an exercise. An alternative challenge might involve a practical activity or other form of research.

Videos on the web can be very useful supplements to your distance learning efforts. Wherever an online video(s) will help you then it will be hyperlinked at the appropriate point.

3.2 Standards for Measurement

3.2.1 Defining Measurement Systems

The two main systems for measurement are imperial and metric, the metric system is the standard adopted by almost the entire globe, the exceptions still using Imperial are Liberia, Myanmar and the United States. The difference in the metric and imperial system can be shown in Table 3.1 below.

Table 3.1: Metric and imperial units of measuring length

Metric	Imperial
12 inches to 1 foot	10mm to 1cm
3 feet to 1 yard	100cm to 1m
1760 yards to 1 mile	1000m to 1km

		1000111 (0 111111		
		_		
The use of metrics can make calc	culations much simpler,	, hence why it is almost	t globally adopted.	With this in
mind, but it's also important to	define the units of mea	asurement in technica	l drawings, technic	cal drawings

have four different unit lists:

- Inch, pound, second (IPS)
- Millimetre, gram, second (MMGS)
- Centimetre, gram, second (CGS)
- Meter, kilogram, second (MKS)

If these units aren't defined, a manufacturer could make the wrong assumption, and end up with a completely incorrect sized part, which will stall production and be incredibly costly.

3.2.2 Fittings

When considering fittings in an assembly, it is important to think about what kind of fit is required, as this will give different operations. ISO defines three different types of fits, which can then be sub-categorised:

- Clearance fit
- Transition (location) fit
- Interference

Clearance fit is a case where the hole is larger than the shaft, meaning that the two parts will be able to free to slide and rotate. Table 3.2 shows the possible subcategories for clearance fits.

Туре	Description	Example	
Loose running	Large clearance, accuracy	Pivots, latches,	
	is not essential		
Free running	Large clearance, high	Journal Bearings	
	running speeds		
Easy running	Moderate clearances for	Long shafts, pump	
	high running speeds	or fan bearings	
Close running	Small clearances for	Shafts, spindles,	
	moderate running speeds	sliding rods	
Sliding	Minimal clearance for high	Guiding shafts,	
	accuracy	sliding gears	
Location	Close clearances for	Precision guiding	
	precision accuracy		

Table 3.2: Clearance fits

Transition fit is a case where the hole is fractionally smaller than the shaft, and a mild force will be required to assemble or disassemble the system. Table 3.3 shows different classifications of transition fits.

	Table 3.3: Transition fits	
Туре	Description	Example
Tight	Assembled or disassembled by	Hubs,
	hand	gears
Similar	Assembled or disassembled by	Pulleys,
	rubber mallet	bearings
Fixed	Assembled or disassembled	Plugs
	with a light pressing force	

Interference fit will have a smaller hole than the shaft and will need a high force or heat to assemble or disassemble the system, Table 3.4 shows the different types of interference fits.

Туре	Description	Example
Press	Light interference using cold	Retainers
	pressing	
Driving	Medium interference with hot	Permanent
	pressing or high force cold pressing	mounting
Forced	High interference shrink fit with	onto a
	large temperature difference	shaft

These fits are normally given a label for shorthand in technical drawings (in the case for a loose-running shaft, H11 for the hole, e11 for the shaft). Table 3.5 shows the tolerances in the fitting for a three types of clearance fits. (These tolerances may vary as the shaft increases in size).

	Loose-Running			Free-Running			Sliding		
	Hole	Shaft	Fit	Hole H9	Shaft d9	Fit	Hole H8	Shaft f7	Fit
	H11	e11							
Max	+0.060	-0.060	+0.180	+0.025	-0.020	+0.070	+0.010	-0.002	+0.018
Min	+0.000	-0.120	-0.060	+0.000	-0.045	-0.020	+0.000	-0.008	-0.002

Table 3.5: Clearance fit tolerances

3.2.3 Threads

The thread is the turn that is seen on a screw or bolt, that helps anchor it into the assembly. The thread of a nut and bolt are always designed to match, if it doesn't match it can create a lot of stresses in the system, or just jam it. When choosing the appropriate thread size, there a few things that need to be considered, such as the pitch, clearance hole and tapping diameter.

Fig.3.1: A diagram of a screw or bolt thread

Pitch: Width of a thread shown in Fig.3.1

Tapping Diameter: This is the diameter of the hole required to mate with the thread of the screw or bolt.

Clearance Hole: This is the diameter of the hole required to allow the threads to pass through, but not the head of the screw or bolt.

ISO standards split the threading as "coarse" (standard) or "fine", a table of ISO standard threads are shown in Table 3.2.

