Unit 30: Operations and Plant Management

Unit code R/615/1499
Unit level 4
Credit value 15

Introduction

The challenges of modern manufacturing industries require today’s operations engineers to adopt a multi-skilled methodology when dealing with the array of complex engineering problems they are faced with. Long gone are the days of ‘pure’ mechanical or electrical maintenance staff; operations engineers may well specialise within one discipline, but they must have the knowledge and ability to safely tackle problems that could encompass many varied engineering fields, if they are to keep the wheels of industry in motion.

The underlying aims of this unit are to develop the students’ knowledge of the engineering fundamentals that augment the design and operation of plant engineering systems, and to furnish them with the tools and techniques to maintain the ever more technological equipment.

The students are introduced to the concept of thermodynamic systems and their properties in the first learning outcome; this will provide a platform for the topic of heat transfer in industrial applications (as covered in learning outcome four) and underpin their future studies in subsequent units. The second learning outcome examines common mechanical power transmission system elements found in numerous production/manufacturing environments, whilst the third learning outcome investigates fundamental static and dynamic fluid systems.

On completion of this unit students will be able to describe the fundamentals that underpin the operation of the systems they deal with on a daily basis and apply these fundamentals to the successful maintenance of these systems.

Learning Outcomes

By the end of this unit students will be able to:
1. Analyse fundamental thermodynamic systems and their properties.
2. Investigate power transmission systems.
3. Determine the parameters of static and dynamic fluid systems.
4. Examine the principles of heat transfer in industrial applications.
Essential Content

LO1 Analyse fundamental thermodynamic systems and their properties

 Fundamental system:
 Forms of energy and basic definitions
 Definitions of systems (open and closed) and surroundings
 First law of thermodynamics
 The gas laws: Charles’ Law, Boyle’s Law, general gas law and the Characteristic Gas Equation
 The importance and applications of pressure/volume diagrams and the concept of work done
 Polytropic processes: constant pressure, constant volume, adiabatic and isothermal processes

LO2 Investigate power transmission systems

 Power transmission:
 Flat and v-section belts drives: maximum power and initial tension requirements
 Constant wear and constant pressure theories
 Gear trains: simple and compound gear trains; determination of velocity ratio; torque and power
 Friction clutches: flat, single and multi-plate clutches; maximum power transmitted
 Conical clutches: maximum power transmitted

LO3 Determine the parameters of static and dynamic fluid systems

 Fluid flow theory:
 Continuity equations
 Application of Bernoulli’s Equation
 Reynolds number; turbulent and laminar flow
 Measuring devices for fluids: flow, viscosity and pressure
 Determination of head loss in pipes by D’Arcy’s formula, use of Moody diagrams
 Immersed surfaces: centre of pressure, use of parallel axis theorem for immersed surfaces
 Hydrostatic pressure and thrust on immersed surfaces
LO4 **Examine the principles of heat transfer in industrial applications**

Heat transfer:
- Modes of transmission of heat: conduction, convection and radiation
- Heat transfer through composite walls; use of U and k values
- Recuperator, regenerator and evaporative heat exchangers
- Application of formulae to heat exchangers
- Heat losses in thick and thin walled pipes: optimum lagging thickness
Learning Outcomes and Assessment Criteria

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1 Analyse fundamental thermodynamic systems and their properties</td>
<td>M1 Identify the index of compression in polytrophic processes</td>
<td>D1 Illustrate the importance of expressions for work done in thermodynamic processes by applying first principles</td>
</tr>
<tr>
<td>P1 Examine the operation of thermodynamic systems and their properties</td>
<td>P2 Explain the application of the first law of thermodynamics to appropriate systems</td>
<td>P3 Explain the relationships between system constants for a perfect gas</td>
</tr>
<tr>
<td>LO2 Investigate power transmission systems</td>
<td>M2 Discuss the factors that inform the design of an industrial belt drive system</td>
<td>D2 Compare the ‘constant wear’ and ‘constant pressure’ theories as applied to friction clutches</td>
</tr>
<tr>
<td>P4 Calculate the maximum power which can be transmitted by means of a belt</td>
<td>P5 Calculate the maximum power which can be transmitted by means of a friction clutch</td>
<td>P6 Determine the power and torque transmitted through gear trains</td>
</tr>
<tr>
<td>LO3 Determine the parameters of static and dynamic fluid systems</td>
<td>P7 Determine the head losses in pipeline flow</td>
<td>M3 Explore turbulent and laminar flow in Newtonian fluids</td>
</tr>
<tr>
<td>P8 Calculate the hydrostatic pressure and thrust on an immersed surface</td>
<td>P9 Determine the centre of pressure on an immersed surface</td>
<td>D3 Compare the practical application of three different types of differential pressure measuring device</td>
</tr>
<tr>
<td>Pass</td>
<td>Merit</td>
<td>Distinction</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>LO4 Examine the principles of heat transfer in industrial applications</td>
<td>P10 Determine the heat transfer through composite walls</td>
<td>D4 Differentiate differences between parallel and counter flow recuperator heat exchangers</td>
</tr>
<tr>
<td>P11 Apply heat transfer formulae to heat exchangers</td>
<td>M4 Explore heat losses through lagged and unlagged pipes</td>
<td></td>
</tr>
</tbody>
</table>

LO4
Examine the principles of heat transfer in industrial applications

P10
Determine the heat transfer through composite walls

P11
Apply heat transfer formulae to heat exchangers

D4
Differentiate differences between parallel and counter flow recuperator heat exchangers

M4
Explore heat losses through lagged and unlagged pipes
Recommended resources

Textbooks

Websites
http://www.freestudy.co.uk/ FREESTUDY
Tutorials on Engineering
(Tutorials)

Links
This unit links to the following related units:

Unit 29: Electro, Pneumatic and Hydraulic Systems

Unit 31: Electrical Systems and Fault Finding