Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF)

Unit 31: Electrical Systems and Fault Finding

Unit Workbook 2

in a series of 4 for this unit

Learning Outcome 2

Electrical Motors and Generators

INTRODUCTION

Construction, application, characteristics, and testing

Types of electric motors and generators

Practical applications

Generation methods

Starting methods

Voltages, power, speed, torque, inertia

Contents

INTRODUCTION	2
Applications, construction, characteristics, and testing	6
Applications	6
Construction	7
Characteristics	8
Testing	
Types of electric motors	
DC Motors	9
Brushed	
Series wound	9
Shunt wound	
Compound wound	11
Permanent magnet	
Brushless	12
AC Motors	
Synchronous	13
Asynchronous (Induction)	
Single Phase	13
Three Phase	
Types of electric generators	
DC Generators	
Separately excited	14
Self-excited	15
AC Generators	15
Synchronous generator	15
Induction (Asynchronous) Generator	16
Starting Methods	16
Star/Delta Starter	16
Autotransformer Starter	17
Resistance or Reactance Starter	17
Solid-State Soft Starter	17
Quantification of Induction Motor Parameters	17

Unit Workbook 2 – Level 4 ENG– U31: Electrical Systems and Fault Finding © 2020 UniCourse Ltd. All Rights Reserved.

Rotor Voltage	 17
Synchronous speed and rotor speed	
Efficiency and Power	 18
Torque	 18
Inertia	 19
EMI (Electromagnetic Interference)	 19
Cooling and Protection Devices	 20
Cooling	 20
Protection	

Topics Covered: -

Applications, construction, characteristics, and testing

Types of electric motors and generators

Practical applications

Generation methods

Starting methods

Voltages, power, speed, torque, inertia

Applications, construction, characteristics, and testing

Applications

The purpose of an electrical motor is to convert electrical energy into mechanical energy. Some common uses of electrical motors are;

- Electric car
- Washing machine
- Cooling fan
- Refrigerator or freezer
- Microwave oven
- Drive for a conveyor belt
- Robotics

The purpose of an electrical generator is the opposite to that of a motor i.e. to convert mechanical energy into electrical energy. Some common uses of generators are;

- Dynamo on a bicycle
- Power station turbines
- Fossil fuelled cars
- Diesel trains
- Vessels
- Roadworks tool power

An illustration of the motor and generator concepts is shown in figure 1.

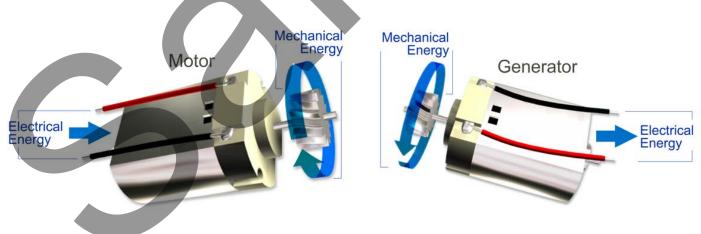


Figure 1 The motor and generator concepts

Construction

The two basic components common to both motors and generators are;

- Rotor the spinning part at the centre
- Stator fixed part which surrounds the rotor

Other components of motors and generators are;

- Bearings these provide physical support for the rotor
- Air gap the space between the rotor and stator
- Windings usually copper coil placed around both the stator and rotor
- Magnets these can be found in either or both the stator and rotor
- Slip rings and brushes present on some types

The overall construction principle for a generator and motor is shown in figure 2.

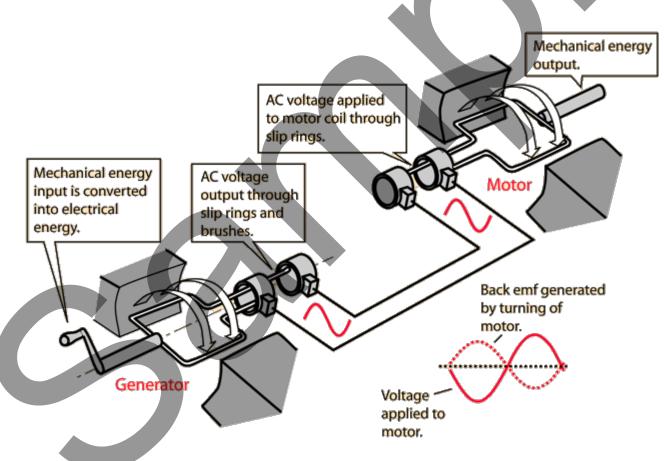


Figure 2 An AC generator powering an AC motor

Characteristics

Motors and generators can be made to operate on an AC or DC principle. The basic idea behind any motor or generator is that current-carrying coils which move within magnetic fields will experience a force, as shown in figure 3.

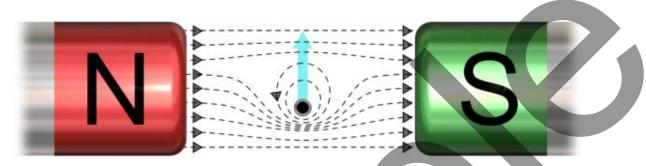


Figure 3 Force on a current-carrying conductor within a magnetic field

Any conductor which carries current will radiate a magnetic field. Placing such a conductor inside a larger magnetic field, perhaps constructed from permanent magnets, as shown in figure 3, will result in the conductor experiencing a force and thus movement.

Should we twist the conductor into the form of a loop then we have one turn of a coil, as shown in figure 4. Now the current will flow in opposite directions on either side of the coil. The magnetic forces then tend to work in opposite directions, producing a twisting force (torque) on the coil about its centre.



Figure 4 Force on a current-carrying coil within a magnetic field

Testing

Testing of motors and generators may be undertaken with a digital or analogue multimeter, clamp meter, temperature sensor, Megger or oscilloscope.

