

1.1 Behavioural Characteristics:

Purpose

When choosing a material for a design, it is important to know how it will react under loading. For example, porcelain and clay will not make a good elastic band, and bridges are

not made of polyester. Choosing the right material to ensure proper performance is vital in the design process.

1.1.1 Tensile Tests

The behavioural characteristics of materials is determined by a tensile test, in which a tensile force is applied to the material and the extension is noted, this process can be done until

destruction.

Theory

Fig. 1.1 shows a tensile test of mild steel; the graph can be broken down into ten important sections:

- i) Between A and B, Hooke's law applies, and Stress is directly proportional to strain.
- ii) Point B is the limit of proportionality, and stress is no longer proportional to strain.
- iii) Point C is the elastic limit, if the material is released at this point, it will return to its original length with negligible permanent extension
- iv) Point D is the yield point, after this point there is a huge extension for a small amount of load, the yield stress of the material is calculated as Eq.1.1.

load where yield takes place original cross-sectional area

(Eq.1.1)

- v) After point J the material strain hardens, and the slope becomes about 1/50th of that of A to B.
- vi) Between points D and E, extension takes place over the whole gauge length of the specimen
- vii) Point E signals the ultimate tensile stress (UTS), the maximum load that the material can withstand calculated with Eq.1.2.

$$UTS = \frac{max \ load}{original \ cross-sectional \ area}$$
(Eq.1.2)

- viii)Point E to F is the material beginning to fail, as the cross-sectional area of the material greatly decreases and forms a "neck".
- ix) Point F is the point of failure, the material will fracture
- x) Point G to H is the permanent elongation of the material

1.1.2 Tensile Tests for Different Materials

Fig.1.2 shows the tensile tests for four different materials. All show a different relationship between load and extension.

From Fig.1.2:

- Material A shows a brittle material, there is high load with little extension, but there is no plastic deformation present. There is just an immediate, catastrophic failure. Materials like this are typically ceramics.
- Material B is a strong material that is not ductile, there is a small amount of plastic deformation before failure, there is a lot of elastic strain energy in these materials, wires made of a material such as this can whiplash on failure and be very dangerous. These is typically brittle metals.
- Material C is a ductile material, similar to the mild steel used in Fig.1.1.
- Material D is a plastic material such as a polymer, there is little elastic deformation before a large amount of plastic deformation.

