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The follower, during its travel, may have one of the following motions shown in Fig.4.2. Uniform Velocity 
shows a constant speed, and exhibits a linear displacement. Uniform acceleration-retardation is a constant 
acceleration and deceleration, which displaces in a cubic fashion; and simple harmonic motion, which is 
sinusoidal. 

 

 
Fig.4.2: Displacement maps for uniform velocity (right), uniform acceleration-retardation (centre), and simple harmonic motion (right) 

4.1.3 Developing Displacement Maps 
A displacement map is typically built from several different graphs combined. 

i. Uniform velocity – We know that the graph is linear, and the general equation for linear displacement 
is shown with Eq.4.1 

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐  (Eq.4.1) 

The boundary conditions for this we know is that 𝑦𝑦 = 0 at 𝑚𝑚 = 0, 2𝜋𝜋 and 𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 at a specified 
value for x. Which will give everything that is necessary to find the equations for each part. 

ii. Uniform acceleration-retardation – the equation for constant acceleration, and its relationship with 
displacement is shown in Eq.4.2. 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑚𝑚2

= 𝑐𝑐  (Eq.4.2) 

Integrating twice will give a cubic equation, but it will also show linear velocity. We also know that 
𝑑𝑑𝑦𝑦
𝑑𝑑𝑚𝑚

= 0 when y is at its maximum and minimum. 

iii. Simple harmonic motion – The acceleration of the graph is shown by Eq.4.3. 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑚𝑚2

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚) (Eq.4.3) 

Again, integrating twice will give the displacement equation. Using boundary conditions to figure out the 
necessary constants. 

 

 

A Rise-Return-Rise cam is to be designed with the following specifications: 

Peak displacement of 80 mm occurs when the cam angle (𝑚𝑚) is 𝜋𝜋 radians, before returning to its original 
position (𝑦𝑦 = 0) at a cam angle of 0 and 2𝜋𝜋. Plot the displacement maps for: 

Example 
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a) Uniform velocity 
b) Uniform acceleration-retardation 
c) Simple harmonic motion 

Answer: 

For any questions regarding this, a simple hand-drawn graph with important points detailed (peak 
displacement, any mid-points or axis intersects) is perfectly acceptable. However, if you do wish to do 
generate a computer-generated graph, more detailed equations must be generated. 

a) This needs to be broken down into two parts, to look at the rise and return. With uniform velocity we 
have the general equation 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 
For the rise 
𝑦𝑦(0) = 0 and 𝑦𝑦(𝜋𝜋) = 80 gives 𝑐𝑐 = 0 and 𝑚𝑚 = 80/𝜋𝜋 
For the return 
𝑦𝑦(𝜋𝜋) = 80 and 𝑦𝑦(2𝜋𝜋) = 0 gives 𝑐𝑐 =  160 and 𝑚𝑚 =  −80/𝜋𝜋; which gives 

 
b) Uniform acceleration-retardation needs to be broken down into 3 sections 

i. Initial acceleration between 0 and π/2 
ii. Deceleration between π/2 and 3π/2 

iii. Acceleration between 3π/2 and 2π 

We know that 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑚𝑚2
= 𝑐𝑐, which integrates to become the velocity 𝑑𝑑𝑦𝑦

𝑑𝑑𝑚𝑚
= 𝑐𝑐𝑚𝑚 + 𝑑𝑑, and integrates again 

to become displacement 𝑦𝑦 = 𝑐𝑐𝑚𝑚2

2
+ 𝑑𝑑𝑚𝑚 + 𝑒𝑒 

i. The boundary conditions we can use are 𝑦𝑦(0) = 0; 𝑦𝑦(π/2) = 40; 𝑑𝑑𝑦𝑦
𝑑𝑑(0) = 0; 

𝑦𝑦(0) =
𝑐𝑐(0)2

2
+ 𝑑𝑑(0) + 𝑒𝑒 = 0 ∴  𝑒𝑒 = 0 

𝑦𝑦 �
𝜋𝜋
2
� =

𝑐𝑐 �𝜋𝜋2�
2

2
+ 𝑑𝑑

𝜋𝜋
2

= 40 =
𝜋𝜋2

8
𝑐𝑐 +

𝜋𝜋
2
𝑑𝑑 = 40 

𝑑𝑑𝑦𝑦
𝑑𝑑(0) = 𝑐𝑐𝑚𝑚 + 𝑑𝑑 = 0 ∴ 𝑑𝑑 = 0 

And so, π
2

8
𝑐𝑐 = 40 gives 𝑐𝑐 = 8

π2
40 = 320

π2
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The displacement graph is   𝑦𝑦 = 160
π2
𝑚𝑚2 

 

ii. A rise-return-rise graph that peaks at π means that 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑚𝑚2
= ±𝑐𝑐, depending on whether the 

system is accelerating or decelerating. 𝑑𝑑𝑦𝑦
𝑑𝑑𝑚𝑚

= −𝑐𝑐𝑚𝑚 + 𝑓𝑓, and integrates again to become 

displacement 𝑦𝑦 = −𝑐𝑐𝑚𝑚2

2
+ 𝑓𝑓𝑚𝑚 + 𝑔𝑔 

The boundary conditions in this case are 
𝑑𝑑𝑦𝑦
𝑑𝑑(𝜋𝜋) = 0 and 𝑦𝑦(𝜋𝜋) = 80 

𝑑𝑑𝑦𝑦
𝑑𝑑(𝜋𝜋) = −𝑐𝑐(𝜋𝜋) + 𝑓𝑓 = 0 ∴ 𝑓𝑓 = 𝑐𝑐𝜋𝜋 =

320
𝜋𝜋

 

𝑦𝑦(𝜋𝜋) =
−320(𝜋𝜋)2

2𝜋𝜋2
+

320𝜋𝜋
𝜋𝜋

+ 𝑔𝑔 = 80 ∴ 𝑔𝑔 = 80 + 160− 320 = −80 

The displacement graph is therefore  𝑦𝑦 = −160(𝑚𝑚)2

π2
+ 320𝑚𝑚

π
− 80 

iii. The final part of the graph will have the equations 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑚𝑚2
= 𝑐𝑐, 𝑑𝑑𝑦𝑦

𝑑𝑑𝑚𝑚
= 𝑐𝑐𝑚𝑚 + ℎ, and   

𝑦𝑦 = 𝑐𝑐𝑚𝑚2

2
+ ℎ𝑚𝑚 + 𝑖𝑖 

The boundary conditions are 
𝑑𝑑𝑦𝑦

𝑑𝑑(2𝜋𝜋) = 0 and 𝑦𝑦(2𝜋𝜋) = 0 

𝑑𝑑𝑦𝑦
𝑑𝑑(2𝜋𝜋) = 𝑐𝑐(2𝜋𝜋) =

320(2𝜋𝜋)
𝜋𝜋2

+ ℎ = 0 ∴ ℎ = −
2(320)
𝜋𝜋

= −
640
𝜋𝜋

 

𝑦𝑦(2𝜋𝜋) =
320(2𝜋𝜋2)

2𝜋𝜋2
+
−640(2𝜋𝜋)

𝜋𝜋
+ 𝑖𝑖 = 0 

𝑖𝑖 = −4(160) + 2(640) = 640 

And the displacement function is 𝑦𝑦(𝜋𝜋) = 160(𝑚𝑚)2

𝜋𝜋2
− 320𝑚𝑚

𝜋𝜋
+ 640 which looks like 

 

c) Simple harmonic motion acceleration is expressed as 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑚𝑚2

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), integrating gives                                                  
𝑑𝑑𝑦𝑦
𝑑𝑑𝑚𝑚

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚) + 𝑗𝑗 and displacement is 𝑦𝑦 = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚) + 𝑗𝑗𝑚𝑚 + 𝑘𝑘 
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The boundary conditions are 𝑦𝑦(0) = 0, 𝑑𝑑𝑦𝑦
𝑑𝑑(0) = 0 

𝑑𝑑𝑦𝑦
𝑑𝑑(0) = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐(0) + 𝑗𝑗 = 0 ∴ 𝑗𝑗 = 0 

𝑦𝑦(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0) + 𝑘𝑘 = 0 ∴ 𝑘𝑘 = 𝑐𝑐 

 We know that 𝑘𝑘 = 𝑐𝑐, but 𝑐𝑐 is still unknown, so we need another condition, such as 𝑦𝑦(2π) = 80 

−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(π) + 𝑐𝑐 = 80 

𝑐𝑐 + 𝑐𝑐 = 80 ∴ 𝑐𝑐 = 40 

The displacement function is therefore 𝑦𝑦 = −40𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚) + 40 which looks like the graph below 
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4.3 Rotating Systems 
4.3.1 Static Balancing Rotating Mass Systems 

An imbalance in a rotating mass system can cause problems within any system. The rotating 
mass will produce a vibrating force, which can resonate and cause a lot of damage. It’s 

important to balance any moments or forces in the system. 

Consider two weighted plates on a rotating mass, like the one shown in Fig.4.4. The two black 
circles indicate where the point mass of the plates can be measured from. If the shaft is static 

(not rotating), then the point will rotate under gravity, meaning that the shaft is not balanced. A realistic 
example of a weighted shaft is a crankshaft. 

 

 
Fig.4.4: A weighted shaft 

When statically balancing a shaft, it is helpful to draw a force polygon by introducing ficticious “centrifugal 
forces”. Let’s say that the distances of the masses from the centre of the shaft is “r”, we can construct the 
force polygon, or an “mr” polygon. Fig.4.5 shows the force polygon about the shaft and determines the static 
forces acting on the shaft. When just considering the black arrows of 𝑚𝑚1𝑟𝑟1 and 𝑚𝑚2𝑟𝑟2, the polygon is “open” 
and unbalanced. 

 
Fig.4.5: Force (mr) polygon for balancing Fig4.4, in this case, θ is the angle relative to m1 

The red line indicates the the angle, mass and distance from the centre of the shaft that the balancing 
force must be placed to keep the shaft statically balanced and the polygon “closed”. 

 

m1 
m2 

Purpose 

Theory 

Example 
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𝑚𝑚𝑟𝑟4 = �0.04702 + 0.0032 = 0.0471 

We can now calculate ν: 

ν = 𝑐𝑐𝑖𝑖𝑐𝑐−1 �
0.0470
0.0471

� = 86.3° 

Which gives θ as: 

θ =  180 + 86.3 = 266.3° 

4.3.2 Dynamic Balancing Rotating Mass Systems 
We have just covered static balancing. But this does not work when the shaft is rotating, this 
will cause problems if any of the planes are not in the centre of the shaft. The shaft in Fig.4.4 

will not be balanced dynamically, when the system is rotating it can cause a moment about the centre of the 
shaft. One option to remove this is by statically balancing each plane on the shaft, but this is not always 
possible. Another option is to create a balancing moment on a new plane on the shaft, but this is ill-advised 
if the shaft is flexible. 

Let’s consider the shaft in Fig.4.4. A side view of the shaft is shown in Fig.4.6. The method for 
balancing dynamically is similar to balancing statically, but the masses are multiplied by their 

distance to the centre-line of the shaft. 

 
Fig.4.6: A side view of a Fig.4.4 

The moment polygon of the shaft will look like Fig.4.7 below, you will notice that mr2d is in the opposite 
direction, compared to mr2 in Fig.4.5. This because the direction is a vector, and because it is left of the 
centre-line, the value is negative. Again, if the black arrows do not close the polygon, it is unbalanced and 
needs a balancing moment to close the polygon. 

Purpose 

Theory 
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Fig.4.7: Moment polygon for the two-plane shaft from Fig.4.4 

 

The diagrams below show a simplified schematic of an unbalanced crankshaft, with all measurements 
required to balance the moments about the shaft. The mass of each crank is 500 g and 150 mm away from 
the centre of the shaft. The designer wants to balance the shaft by adding another crank of the same mass 
and radius to the shaft. Calculate the distance from the centre-line of the shaft that this additional crank 
must be placed. 

                    

Answer: 

The moment polygon is drawn below Taking left as positive for 𝒅𝒅, means 𝒎𝒎𝒓𝒓𝟑𝟑𝒅𝒅 is negative, and                        
𝒎𝒎𝒓𝒓𝟐𝟐𝒅𝒅 = 𝟎𝟎. Like static balancing, if the arrows and angles are drawn to scale, measuring the length and angle 
will give the correct answer. However, the trigonometry for the answer is: 

Example 
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