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The follower, during its travel, may have one of the following motions shown in Fig.4.2. Uniform Velocity
shows a constant speed, and exhibits a linear displacement. Uniform acceleration-retardation is a constant
acceleration and deceleration, which displaces in a cubic fashion; and simple harmonic motion, which is
sinusoidal.

/ N

s NP4

is shown with Eq.4.1
y=mx-+c

The boundary conditions for this we kn
value for x. Which will give everythin

ii. Uniform acceleration-retardation —
displacement is shown in Eq.4

(Eq.4.2)

d minimum.
iii. Simple ha e acceleration of the graph is shown by Eq.4.3.
%y
== cCos(x) (Eq.4.3)

Again, integrating twice will give the displacement equation. Using boundary conditions to figure out the
necessary constants.

A Rise-Return-Rise cam is to be designed with the following specifications:

Peak displacement of 80 mm occurs when the cam angle (x) is  radians, before returning to its original
position (y = 0) at a cam angle of 0 and 2. Plot the displacement maps for:
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a) Uniform velocity
b) Uniform acceleration-retardation
c) Simple harmonic motion

Answer:

For any questions regarding this, a simple hand-drawn graph with important points detailed (peak
displacement, any mid-points or axis intersects) is perfectly acceptable. However, if you do wish to do
generate a computer-generated graph, more detailed equations must be generated.

a) This needs to be broken down into two parts, to look at the rise and return. With uniform velocity we
have the general equationy = mx + ¢
For the rise
y(0) = 0 and y(m) = 80 givesc = 0 and m = 80/m
For the return
y(m) =80 and y(2m) = 0 givesc = 160 andm = —80/1;

80t

ich

™

3n/2 Zn
b) Uniform acceleration-reta i roken down into 3 sections

. . d . .
integrates to become the velocity ﬁ = cx + d, and integrates again

2
to become displaceme % +dx+e

i.  The boundary conditions we can use are y(0) = 0; y(m/2) = 40; - 0;

ao)
c(0)?
y(0) = > +d0)+e =0 e=0
T\ 2
(”)—6(7) vd=40=""c+Td = 40
Y\2) =72 2" Tt
Y o xtd=0-d=0
d(O)_Cx = o =
2
Andso,ﬁ—c=40givesc=%40=£20
8 T T
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The displacement graph is y = 100 2

T2

" . . d? .
ii.  Arise-return-rise graph that peaks at m means that d_xZ = +c, depending on whether the

. . . d . .
system is accelerating or decelerating. ﬁ = —cx + f, and integrates again to become

—cx?

—tfxt+yg
The boundary conditions in this case are

dy _ _
prate 0 and y(mr) = 80

displacementy =

dy P _@
@——c(n)+f—0--f—cn— -

—320(n)? 320m
y(m) = +

o2 +9g=80-.g=280 60— 3
— 2
The displacement graph is therefore y = 16T(:2(x) + 3211 0
iii.  The final part of the graph will have the eunQc x + h, and

2
y = % +hx +1i
The boundary conditions are

dy _
ot 0Oandy(2m) =0

d
2(3 640
o h = = —
s s

60) + 2(640) = 640

2
A e displacement ofyis y(m) = 161(296) — 3zn()x + 640 which looks like
/ /H\
/ \
40

/ \

\

o -\""‘-\-.
n/4 n/2 3n/4 n 5n/4 3n/2 n/4 2n
. . . . . d? . . .
c) Simple harmonic motion acceleration is expressed as d—x}; = cCos(x), integrating gives
d . . . .
% = cCos(x) + j and displacementisy = —cCos(x) + jx + k
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The boundary conditions are y(0) = 0,% =0

dy . o
m—cSln(0)+]—0--1—0

y(0) = —cCos(0)+k =0~k =c

We know that k = ¢, but c is still unknown, so we need another condition, such as y(2m) = 80

—cCos(m) + ¢ =80
c+c=80-c=40

The displacement function is therefore y = —40Cos(x) + 40 which looks like the graph below

801

401

n)4 n/2 311'/2

5n/4

n/4
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4.3 Rotating Systems

4.3.1 Static Balancing Rotating Mass Systems

Purpose An imbalance in a rotating mass system can cause problems within any system. The rotating
— J mass will produce a vibrating force, which can resonate and cause a lot of damage. It's
important to balance any moments or forces in the system.

)

Theory Consider two weighted plates on a rotating mass, like the one shown in Fig.4.4. The two black
—J circlesindicate where the point mass of the plates can be measured from. If the shaft is static
(not rotating), then the point will rotate under gravity, meaning that the shaft is not balanced. A realistic
example of a weighted shaft is a crankshaft.

When statically balancing a shaft, it is helg

forces”. Let’s say that the distances of the centre of the shaft is “r”, we can construct the
force polygon, or an “mr” polygon.
forces acting on the shaft. When
and unbalanced.

t co

mify

Fig.4.5: Force (mr) polygon for balancing Fig4.4, in this case, 8 is the angle relative to mi

The red line indicates the the angle, mass and distance from the centre of the shaft that the balancing
force must be placed to keep the shaft statically balanced and the polygon “closed”.
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mr, = +/0.04702 + 0.0032 = 0.0471

We can now calculate v:

0.04-70)

v=Sintl (0.0471

= 86.3°

Which gives 0 as:

0 = 180 + 86.3 = 266.3°

4.3.2 Dynamic Balancing Rotating Mass Systems

We have just covered static balancing. But this does not work when the shaft is rotating, this
will cause problems if any of the planes are not in the centre of the shaft. The shaft in Fig.4.4

possible. Another option is to create a balancing moment on a new
if the shaft is flexible.

Let’s consider the shaft in Fig.4.4. A side view of &
balancing dynamically is similar to balancing st

distance to the centre-line of the shaft.

in Fig.4.6. The method for
es are multiplied by their

Fig.4.6: A side view of a Fig.4.4

ill look like Fig.4.7 below, you will notice that mrad is in the opposite
direction, compared t .4.5. This because the direction is a vector, and because it is left of the
centre-line, the value is ive. Again, if the black arrows do not close the polygon, it is unbalanced and
needs a balancing moment to close the polygon.

The moment polygon of the sh
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mrad \90°

mrz(-d)

Y.

Fig.4.7: Moment polygon for the two-plane shaff

The diagrams below show a simplified schematic of an unba ft, with all measurements
required to balance the moments about the shaft. The mass @ ank i and 150 mm away from
the centre of the shaft. The designer wants to balance the ynother crank of the same mass
and radius to the shaft. Calculate the distance from shaft that this additional crank
must be placed.

Centre Line

Answer:

The moment polygon is drawn below Taking left as positive for d, means mrsd is negative, and
mr,d = 0. Like static balancing, if the arrows and angles are drawn to scale, measuring the length and angle
will give the correct answer. However, the trigonometry for the answer is:
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