Unit 37: Virtual Engineering

Unit Y/615/1505
Unit level 5
Credit value 15

Introduction

The work of an engineer increasingly involves the use of powerful software modelling tools (virtual modelling). These tools allow us to predict potential manufacturing difficulties, suggest how a product or component is likely to behave in service, and undertake rapid and low cost design iteration and optimisation, to reduce costs, pre-empt failure and enhance performance.

This unit introduces students to the application of relevant Computer Aided Design (CAD) and analysis engineering tools in contemporary engineering. They will learn about standards, regulations and legal compliance within the context of engineering.

Topics included in this unit are: dimensioning and tolerances, standardisation and regulatory compliance (BS, ASTM, ISO, etc.), material properties and selection, manufacturing processes, 2D, 3D, CAD, solid modelling, one-dimensional and multi-dimensional problems, meshing and boundary conditions, and the finite volume method.

On successful completion of this unit students will be able to consider how to perform computational fluid dynamics (CFD) simulations, develop finite element product and system models, explain the identification of faults in the application of simulation techniques and discuss the modelling method and data accuracy.

Learning Outcomes

By the end of this unit students will be able to:

1. Explore the capabilities and limitations of computer-based models in meeting design fundamentals and their use in solving problems in engineering.
2. Analyse finite element product and system models in order to find and solve potential structural or performance issues.
3. Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting.
4. Determine faults in the application of simulation techniques to evaluate the modelling method and data accuracy.
Essential Content

LO1 Explore the capabilities and limitations of computer-based models in meeting design fundamentals and their use in solving problems in engineering

Engineering design fundamentals:
Dimensioning and tolerances
Standardisation and regulatory compliance (BS, ASTM, ISO, etc.)

How to manufacture and what to manufacture:
Material properties and selection
Manufacturing processes: capability, cost issues and selection

Design tools:
2D and 3D CAD
Solid modelling
File types, export and compatibility

Interpretation and presentation of results through a series of guided exercises:
Results obtained, comparison of data, benefits and limitations
Generalisation of provided information, recommendations on current and future applications

LO2 Analyse finite element product and system models in order to find and solve potential structural or performance issues

Finite element formulation:
One-dimensional problems
Multi-dimensional problems
Beams

Finite element method:
Define the problem: simplify an engineering problem into a problem that can be solved using FEA
Define material properties and boundary conditions; choose appropriate functions, formulate equations, solve equations, visualise and explain the results
LO3 **Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting**

Fundamentals of CFD (Computational Fluid Dynamics):

- CFD and the finite volume method background
- Meshing and boundary conditions
- Applications, advantages and limitations of CFD

CFD simulation and analysis:

- Apply CFD to simple design/aerodynamics problems: define the problem, provide initial boundary conditions for the problem, set-up a physical model, define material properties and operating conditions
- Interpretation of CFD results
- Examine the solution using graphical and numerical tools; suggest and make revision of the models

LO4 **Determine faults in the application of simulation techniques to evaluate the modelling method and data accuracy**

Simulation results:

- Extracting relevant information from simulation-based exercises
- Interpretation and presentation of results through a series of guided exercises
Learning Outcomes and Assessment Criteria

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1 Explore the capabilities and limitations of computer-based models in meeting design fundamentals and their use in solving problems in engineering</td>
<td>D1 Critically evaluate and provide supported recommendations for the application of computer-based models to an industrial environment that would improve efficiency and problem-solving</td>
<td></td>
</tr>
<tr>
<td>P1 Discuss the benefits and pitfalls of computer-based models used within an industrial environment to solve problems in engineering</td>
<td>M1 Evaluate the capabilities and limitations of computer-based models</td>
<td>M2 Evaluate the processes and applications used in solving problems in engineering</td>
</tr>
<tr>
<td>LO2 Analyse finite element product and system models in order to find and solve potential structural or performance issues</td>
<td>D2 For a range of practical examples, provide supported and justified recommendations for recognising and solving potential structural or performance-based issues, using finite element product and systems models</td>
<td></td>
</tr>
<tr>
<td>P2 Analyse the role of finite element analysis in modelling products and systems</td>
<td>M3 Critically analyse the finite element product and systems models that help to find and solve potential performance or structural issues for a range of practical examples</td>
<td></td>
</tr>
<tr>
<td>P3 Review a range of practical examples to solve potential structural or performance-based issues using finite element product and systems models</td>
<td>LO3 Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting</td>
<td>D3 Provide supported and appropriate recommendations for improving efficiency and the generation of suitable meshes for CFD simulations</td>
</tr>
<tr>
<td>P4 Demonstrate the importance of CFD simulations applied to evaluate pressure and velocity distributions in the engineering setting</td>
<td>M4 Evaluate the application and limitations of CFD in an engineering context</td>
<td>LO4 Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting</td>
</tr>
<tr>
<td>Pass</td>
<td>Merit</td>
<td>Distinction</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>LO4 Determine faults in the application of simulation techniques to evaluate the modelling method and data accuracy</td>
<td>M5 Extract relevant information from simulation</td>
<td>D4 Critically evaluate the appropriate application of simulation techniques that can support decision-making</td>
</tr>
<tr>
<td>P5 Determine the faults in the application of simulation techniques</td>
<td>M6 Trace potential faults in the application of simulation techniques</td>
<td></td>
</tr>
<tr>
<td>P6 Discuss and evaluate the modelling method and data accuracy</td>
<td>M7 Critically review results through a series of guided exercises and recommendations</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Resources

Textbooks

Websites
www.tandfonline.com Taylor & Francis Online
International Journal of Computational (Journal)
Progress in Computational Fluid Dynamics, An International Journal (Journal)
https://www.nafems.org/ NAFEMS
International Journal of CFD Case Studies (Journal)

Links
This unit links to the following related units:
Unit 1: Engineering Design
Unit 50: Advanced Manufacturing Technology