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3.1 Transfer Functions

Transfer functions are used in feedback systems to model the equations that will take place in the control
system. For this we will consider unit step functions. The unit step function u(t) can be defined as:

(0 t<0
“(t)‘{1 t>0

Meaning that until we flip the switch, u has no value, and once we do flip the switch u has a value of one.

3.1.1 Elements of a Transfer Function
Fig.3.1 shows a completed transfer function diagram, there are three points to note:

e F(s)—The input signal.

e H(s) — The overall transfer function of the system (this can be openedti see’a range of smaller
transfer functions. W

e Y(s) —The output signal.

Fig.3.2: Open loop with two transfer functions

For the case of Fig.3.2 which is @ loop, H(s) is given as.
= G2(s) - [X(8)] = G1(s) - G1(s) (Eq.3.2)

However, we also have the case of closed loop systems, such as Fig.3.3, which is a negative feedback loop.

Y(s)

Fig.3.3: A closed loop, negative feedback system
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The transfer function in the case of Fig.3.3 becomes Eq.3.3 The negative feedback loop means that the
denominator is 1 + G(s), a positive feedback loop would require 1 — G(s).

_ G(s)
H(s) = 56 (Eq.3.3)

With H(s) calculated we then use Laplace transformations to make H(x). We then use equation Eq.3.4 to
find out the response required to produce the output signal.

t
y(t) = fo u(t — x)H(x)u(t)dx (Eq.3.4)
While this may look daunting, the equation then simplifies to Eq.3.5

y(t) = fOtH(x)dx t>0 (Eq.3.5)

3.1.2 Transfer Function Example
An engineering system is modelled by the following block diagram.

In the case of C = 1.5 and d = 0.5, determine en the input function is a unit

In this case:
H(s) = 1.5 3
> = 25+055 5+s
We then use Laplace t tion generates the impulse response H(t):
H — —1H — —1{ } — -5t
t)=LH(s) =L E s 3e "tu(t)

And so, the response to a step input is given by the integration of h(t) with u(t):

y(t) = fu(t —x)5e " "*u(t)dx

t
=J 5e *dx t>0
0
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3.2 Measurement in Practice

People make measurements for many reasons: to make sure an item will fit, to determine the correct price
to pay for something, or to check that a manufactured item is within specification. In all cases, a
measurement is only useful if it is suitable for the intended purpose. Consider the following questions:

e Do you know how accurate your measurement result is?
e s this accurate enough?
e How strongly do you trust the result?

These questions relate to the quality of a measurement. When talking about measurement quality, it is
important to understand the following concepts:

3.2.1 Precision, Accuracy and Uncertainty
Precision is about how close measurements are to one another. A cl measurements
are to the ‘true value’. In reality, it is not possible to know the ‘true e intrgduce the concept
of uncertainty to help quantify how wrong our value might be. The en accuracy and
precision is illustrated in Fig.3.4 below. The idea is that firig a target is like making a
measurement. Accuracy is a qualitative term that describes easurements are to the
actual (true) value. Precision describes the spread of these hen repeated. A measurement
that has high precision has good repeatability.

High accuracy,
high precision high precision

e between accuracy and precision

the factors that go into makin easurement and how each factor could have affected the final estimate
of the answer. The a ow wrong are we likely to have been?” is known as the ‘measurement
uncertainty’, and this is the most useful assessment of how far our estimate is likely to lie from the ‘true
value’. For example, we might say that the length of a particular stick is 200cm with an uncertainty of £ 1cm.

3.2.2 Don't Confuse Mistakes with Errors!

Measurement scientists use the term ‘error’ to specify the difference between an estimate of quantity and
its ‘true value’. The word 'error' does not imply that any mistakes have been made. Where the size and effect
of an error are known (e.g. from a calibration certificate) a correction can be applied to the measurement
result. If the value of an error is not known, this is a source of uncertainty.
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e Uncertainty is the quantification of the doubt about the measurement result and tells us something
about its quality.

e Erroris the difference between the measured value and the true value of the thing being measured.

e True value is the value that would be obtained by a theoretically perfect measurement.

So, what is not uncertainty?

e Mistakes made by operators are NOT uncertainties — operator mistakes can be avoided by working
carefully through a procedure and checking work.

e Tolerances are NOT uncertainties — tolerances are acceptance limits chosen for a process or product.

e Accuracy is NOT uncertainty — the true value of a measurement is never known.

3.2.3 Repeatability and Reproducibility
'Measure twice and cut once.' This popular proverb expresses the need tg e have a good
measurement before committing to a potentially irreversible decis i ( should adhere
to. By repeating a measurement many times, a mean (average) value . e repeatability
is high, the statistical uncertainty in the mean value will be low. Howeve i asuring equipment

is used, a different result may be obtained because of errors a i struments.
If you take a voltage measurement three times in one min e multimeter, you would expect
to get a similar answer each time. Repeatability describes the a in sets of measurements where

the same person uses the same equipment in the same conditions. But if another
person had a go at taking the same measurement i > different measuring equipment, a
wider range of answers would be much less . This i producibility' and describes the
agreement within a set of measureme rent people, equipment, methods, locations or
conditions are involved.

Repeatability is the closep etween repeated measurements of the same thing,

Tolerance, also known ce criteria'. It is the maximum acceptable difference bet ween the actual
value of a quantity an e specified for it. For example, if an electrical resistor has a specification of
10Q and there is a tolerance of +10% on that specification, the minimum acceptable resistance would be
9Q) and the maximum would be 11Q. Many factors can reduce accuracy or precision and increase the
uncertainty of your measurement result. Some of the most common are:

e Environmental conditions — changes in temperature or humidity can expand or contract materials as
well as affect the performance of measurement equipment.

e Inferior measuring equipment — equipment which is poorly maintained, damaged or not calibrated
will give less reliable results.

e Poor measuring techniques — having consistent procedures for your measurements is vital.
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3.3 Error Analysis

“Errors using inadequate data are much less than those using no data at all.”
(C. Babbage)

No measurement of a physical quantity can be entirely accurate. It is important to know, therefore, just how
much the measured value is likely to deviate from the unknown, true, value of the quantity. The art of
estimating these deviations should probably be called uncertainty analysis, but for historical reasons is
referred to as error analysis.

3.3.1 Significant Figures

Whenever you make a measurement, the number of meaningful digits that you write.down implies the error

in the measurement. For example, if you say that the length of an object is 0.4 Jimply an uncertainty
of about 0.001m. To record this measurement as either 0.4 or 0.4 ; t you only know
it to 0.1m in the first case or to 0.00000001m in the second. You any significant

figures (S.F) as are consistent with the estimated error. The quantity 0. i pdve three S.F that is,
three digits that make sense in terms of the measurement. Notiee g to do with the
"number of decimal places". The same measurement in centi v .8cm and still be a three

In the example if the estimated error is 0.02m you wo result of 0.43 + 0.02 m, not
0.428 + 0.02 m.

Students frequently are confused about when .F.The rule is: If the zero has a non-zero
digit anywhere to its left, then the zero is si or example, 5.00 has three S.F; the

The absolute error in a measure i i rtainty in the quantity and has the same units as the
guantity itself. For e i is 0.428m + 0.002m, the 0.002m is an absolute error.

The relative err ror) is obtained by dividing the absolute error in the quantity
by the quantit . usually more significant than the absolute error. For example, a

1mm errorin th wheel is probably more serious than a 1mm error in a truck tire. Note
that relative errors are dimensi ss. When reporting relative errors, it is usual to multiply the fractional

as a relative error of 0.428m + 0.467%

3.3.3 Systematic Errors (Human Error)

Systematic errors arise from a flaw in the measurement scheme which is repeated each time a measurement
is made. If you do the same thing wrong each time you make the measurement, your measurement will
differ systematically (that is, in the same direction each time) from the correct result. Some sources of
systematic error are:
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e Errorsin the calibration of the measuring instruments.

e Incorrect measuring technique: For example, one might make an incorrect scale reading because of
parallax error.

e Bias of the experimenter. The experimenter might consistently read an instrument incorrectly or
might let knowledge of the expected value of a result influence the measurements.

Clearly, systematic errors do not average to zero if you average many measurements. If a systematic error is
discovered, a correction can be made to the data for this error. If you measure a voltage with a meter that
later turns out to have a 0.2 V offset, you can correct the originally determined voltages by this amount and
eliminate the error. Although random errors can be handled routinely, there is no prescribed way to find
systematic errors. One must simply sit down and think about all the possible sources of error, and then do
small experiments to see if these sources are active. The goal of a good expesiment is to reduce the

3.3.4 Mistakes
A procedural error that should be avoided by careful attention illegitimate errors and can
generally be corrected by carefully repeating the operations.

3.3.5 Discrepancies
A significant difference between two measured valu
difference between the measured values is greater experimental uncertainty.

The sample standard deviation divided b t of the number of data points shown by Eq.3.2,
(xi—x)z .
———isthe sample v

2 _
where o= =), D)

(Eq.3.2)

3.3.7 Margin
Range of uncer . i i erally use margin of error to indicate a 95% confidence interval,
corresponding

3.3.8 Random errors
Random errors arise fr: ctuations that are most easily observed by making multiple trials of a given
measurement. For example, if you were to measure the period of a pendulum many times with a stop watch,
you would find that your measurements were not always the same. The main source of these fluctuations
would probably be the difficulty of judging exactly when the pendulum came to a given point in its motion,
and in starting and stopping the stop watch at the time that you judge. Since you would not get the same
value of the period each time that you try to measure it, your result is obviously uncertain. There are several
common sources of such random uncertainties in the type of experiments that you are likely to perform:

Uncontrollable fluctuations in initial conditions in the measurements. Such fluctuations are the main reason
why, no matter how skilled the player, no individual can toss a basketball from the free throw line through
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3.3 Data Representation Techniques

3.3.1 Tables

Tables are a concise way of recording data, it can show the precise values obtained from the experiments.
Using spreadsheet software (such as Microsoft Excel) to record data proves useful as it is easy to take the
data and quickly calculate further information for each test, or produce graphical results.

3.3.2 Graphical Techniques

Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form,
graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such
as scatter plots, histograms, probability plots, spaghetti plots, residual plots, box plots, and many more.

Exploratory data analysis (EDA) relies heavily on such techniques. They can als , jinsight into a data
set to help with testing assumptions, model selection and regressi C fimator selection,
relationship identification, factor effect determination, and outli it addition, the choice of
appropriate statistical graphics can provide a convincing means of co i derlying message
that is present in the data to others. Graphical statistical methods

e The exploration of the content of a data set
e The use to find structure in data

e Checking assumptions in statistical models
e Communicate the results of an analysis.

If one is not using statistical graphics, then on r more aspects of the underlying

structure of the data.

3.3.3 Scatter Graphs

Scatter graphs are used to show ghe any i correlation, and with the correlation try to confirm a

e record the average temperature over the hour, and record how many
shows the scatter graph for the data collected over 14 days.
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Fig.3.5: Average temperature compared to ice cream sales

show.

Fig.3.6: Possible c

data to realise there is a correlation, so it can be important to use the
gineering Maths.

Sometimes there can be too
equations discussed in
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Example
Consider the following 15-point data set:

Table 3.1: Resistance of a component compared with current drawn

Resistance Current
() | Drawn (A)
1 4
5 2
1 8
6 2
8 4
4 3
3 6
5 5
8 4
7 2
9 1
4
3
2
1
Recalling the general equation for a straight-line graph, sho ith 3.
y=mR+ c (Eq'8.3)
Eqg.3.4 shows the equation with linear regre analysi iables:

(Eq.3.4)
is the number of points.
+a, ) x; (Eq.3.5)

i =aonx; +a X xt (Eq.3.6)

Table 3.2 below gives more infogmation needed to calculate ay and a;.
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Table 3.2: x;, Vi, Xi Vi, xiz and their respective totals

X; Yi XiYi x
1 4 4 1
5 2 10 25
1 8 8 1
6 2 12 36
8 4 32 64
4 3 12 16
3 6 18 9
5 5 25 25
8 4 32 64
7 2 14
9 1 9
4 3 12
3 5 15
2 8
1 7

67 64

simultaneous equations.

Multiply [1] by 67 and [2] by 15 to
4288 = 1005a, + 4489a,
3390 = 1005a 015a;

Subtract [3] fro

—898
898 = 1526a; = a; = 7~ = —0.588

64— 67(—0.588) _

“ag = T 6.89

The equation for linear regression is therefore:

y = —0.588x + 6.89
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The scatter graph with the line of regression is shown by Fig.3.7.

Current Drawn
L]

4 Resistance 6

Fig.3.7: Scatter graph and linear regression line for the

However, just because there is a correlation, does not mean theg

ptained, more people who have
ause they’re tall”, unless further

|II

skydived were tall” but it is impossible to say th
experimentation is done to prove causation.

es Skydived

her o

Height

Fig.3.8: Height compared to number of times skydived

3.3.4 Histograms

Histograms are similar to bar charts, but are used to cover a range of values, instead of a singular value and
can be used to show a probability distribution graphically, Fig.3.9 shows a histogram for the production rate
per hour over a 24-hour period, the data is shown in Table 3.3. It is possible that the histogram can create a
normally distributed graph, recalling from Unit 2: Engineering Maths, it produces the bell curve that is used
to calculate the probability using "Z values”.
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Table 3.3: Frequency of achieved production rates over a 24-hou3.3.3r period.

Production rate
(products/hour) | Frequency
1-10

11-20
21-30
31-40
41-50
Total 23

Wl |h~|w|lwn

Frequency

O = N W A~ 0o N 0w

3.3.5 Spaghetti Plots

Spaghetti plots are normally assog

Fig.3.10: Damped mass-spring system

What would be the result if a parametric sweep was applied to c analysing 4 different values. The graphical
readout would look like Fig.3.11, giving a spaghetti plot.
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Displacement

Fig.3.11: Spaghetti plot of a parametric sweep for a damped system.

3.3.6 Box Plot

A box plot (commonly referred to as the “Box and Whiskers” dia
minimum, median and also the inter-quartile range. This can be use
the box is small, then the majority of the data is densely packed, and if th
there will be a large difference between the majority of the da
Fig.3.12 shows a box plot example.

ong, then there is a
gest a statistical anomaly.

ig3.12: Box plot example

3.3.7 Residua

Residual plots are used to deve egression models to map trendlines. If the plot appears to look random

about the horizontal a linear model is used. However, if there is a notable U-shape in the graph,
then a non-linear model would be used.
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