Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Pearson BTEC Level 5 Higher Nationals in Engineering

Unit 46: Embedded Sy

Page 1 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Contents
The DeVEIOPMENT CYCIE ittt e st e e s st e e s s bt e e e s nabaa e e s sabeeeessasteeessssaaeessssaeas 5
Integrated Development ENVIFONMENT.......cc.uiiii it e e e e s e e e e saaae e s e eaeaeeeeennaeeaeas 5
Assembler and High-Level LANGUAEESccuiiiiiiiiiiiie ettt e st e st e e s saae e e e ssabaae e s sabaeeesssbaeeeens 5
6073101 011 LT U PPP 6
SIMUIGEOTS ettt e e st et e e s he e e bt e s s et et e e sae e e bt e sme e e s e e s sneenneesneeereennneereene 6
D] o TU 7= {1V SR 6
Code Structure: Flow Diagrams and PSEUAO COUEciiiiiiiiiiiiiiiee ittt e s s saae e e e saeaeas 6
Review of the C Programming LaNgUAGEuvveeeciieeeieiiieeceteee e eciree e eienee e
Language StrUCtUIe ...l A N 8
Data TY PO e

Program Flow

Essential Guide [LolgoYolo) o1 o 1T=Y TP 12
Pinout and B [= [0 e TP 12

Pin Details

Program Memory ... d sl .. 16
Data I BMIO Y i 16
Special Function and General-Purpose Registers (SFR'S/GPR’S).......cc.cevieireeieeeireeeteeereesteeereesreesveesvae v 17
BANK Ottt b e e a bt e h b e e bt e e e b ee e e b et e e b et e e bt e e e abe e e nbeesnreesnneenn 18
BaNK Lttt h e et R e e et e b et e et e b e e ea R e e n e e e n e e beennne e reeenneeanes 19
BaNK 2. et R e e r e e b e e e et e R e e e ar e e n e e e et e beenan e e neeenneeanes 20
BaANIK 3.t b e bt e h bt e e b bt e e b e e e e b et e e be e e et e e e e bt e e e nbeesnreesnaeens 21
SHATUS REBISTEN ittt ettt et e e e e s e et bbbt e e e e e e e e s s sab b taeeeeeeseasasbbaaaeeeesssnansnsaaaaeeas 22

Page 2 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

(0] 1[0 d T U=y <1 =T TSP P UPPTPPPPP 23
INEEITUPE CONTIOI REEISTEI . uuiiiiiieiiiiee ettt et e et e e e s s bt e e e e s ab e e e e e nabbaeesenabaeeessssaeeesnsreeas 24
Peripheral Interrupt ENable REGISTEI Lcooiuiiiieeeiiiee ettt e e e e e e e e e e rarae e e e ennaeaeeeanraeas 25
Peripheral Interrupt ENable REGISTEI 2cciiiiiiieiciiiee ettt e e s e e s s tae e e s s abae e e s sanaeas 26
Peripheral Interrupt ReQUESt REGISTEI L...cciiuiiiiiiiiiiee ettt s s rre e e s s abae e e s saraeas 27
Peripheral Interrupt REQUESt REGISTEI 2...cccneiiiieeeeee ettt e e e erre e e e e e e e e e nraeas 28
oM LT g @o T o o] B 2 T=Y 4 1) = PSP 29
PICI6F690.iNC (INCIUAE FIlE) c.nuveieieeeeiie ettt ettt et e et e et e e et e e et e e sstaeesnseaesnsaeensseeesseeesaeenn 30
INSTIUCTION SEE ...t e AT et e e sanbaeeessannaees 41

Configuration WOKdeviii i esee e esaeeesesnneeeessnnneeees it s o APt e e e tteeeeestaeeeenanns 42
Assembly Language — PIC16F690 Microcontroller Examples............ 500 ... 5 00 L B 43
T T 10 o] [T PO UPROUPPPRTUUUPPPTRUUURTRUPPPPURRUPRRTRTS SRR S SRR 43
100 o1 [PSPPSR ST U SRN 44
Y [10] o] 1 U UPUURTIUUPPPPPRTIOTPPPRIP Ny AURUUUUUTRID: NI S PPTRRURPPRPN 46
10 o] [U U UUPUPPRTIOTUPPRUURTOS. SUTUUURTRY PP PPTRRRRPPPPN 49
Y1 0] o] [YU UURSRUUSRRRRRRY e SRSSTIIS. SRR SRN 52

C Language — PIC16F690 Microcontroller ExamlBSE............. 000 ... 0GB e e e 53
T a 0] o] I PRI N ST PP TPPPRRURPUPPN 53
Y100 o] I ARSI, S S SUUSRN 55
Recommended IDE’Scc.eeeeeere i S0 e i ettt n e ne e 57
MPLAB XPIeSS cooeeeeeeiieeeeeeeeee Bt i e 57
MPLABX ... B 57

Page 3 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

The Development Cycle

Integrated Development Environment

An Integrated Development Environment (IDE) provides a full suite of tools to a software engineer to
facilitate the development of software applications, including code compilation to load onto a
microcontroller chip.

The IDE will usually offer a source code editor, which could be written in Basic, C or Assembly Language,
automation tools, code debugging features and possibly simulation facilities.

Microchip Technology Inc. offer a desktop-based IDE known as MPLABX and a browser-based IDE called
MPLAB Xpress, both of which offer the features mentioned above, plus an abundance of others. These two
IDE’s will feature prominently in this workbook.

Assembler and High-Level Languages
A high-level language is one in which a programmer may write co at is more readily
understandable for the human reader. Some examples of hig given below.

= Python

= C

= C++

= Arduino

= Assembly
= Rust

= CH#

= Verilog

= VHDL

= LabView
= Elixir

= Ada

= D

= Forth

= TCL

= Ladderlogic
= Erlang

In this workbook we will be considering C as our high-level language of choice, aimed at PIC microcontrollers
produced by Microchip Technology Inc.

Assembly Language is as close as you can get to the language of memory chips and software registers (known
as Machine Code, consisting of sequences of 1’s and 0’s). Assembly Language is far more difficult for the
inexperienced programmer to understand and is only beneficial (and more efficient) when the reader has a
deep understanding of the internal registers/ports available within the microcontroller. In this workbook,
we will look at the Assembly Language pertinent to PIC microcontrollers.

Page 5 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Compilers

As previously mentioned, we have High-level Languages and Assembly Language. Whichever language we
choose to write code in, a Compiler is a software application that will turn that code into Machine Language
to be executed on the microcontroller chip.

Simulators
A simulator will mimic the real-life functionality of the microcontroller chip. Most simulators are proprietary,
written by chip manufacturers. Some examples are;

= MPLABX

= PBLAB Xpress
= PICSimLab
= TINA
= gpsim
= Proteus
Debugging
Put simply, debugging is the process employed to fi ugs in computer code. Most debuggers
blo

allow the programmer to step into, step out f code, using watch windows to
observe the specific effects of those lines

Code Structure: Flow Diagra

A Flow Diagram for house is shown in Figure 1.

Read actual
temperature T,

f

Read demand
temperature Tp,

>

Activate
alarm

A

Page 6 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Figure 1: Flow Diagram for a basic refrigerator

Here we see that the rectangular boxes contain commands, whereas the diamond shapes are decision
elements. Of course, we wish the refrigerator to function continually; hence the code must operate in a
continual loop, executing (hopefully) forever or until the power is switched off.

The internal temperature is measured and compared to the desired temperature set by the human
operator. Should the measured temperature be greater than the set temperature, the fridge is too warm,
so the compressor is activated. Another temperature comparison is then made; if the actual temperature is
no longer above the set temperature, then the compressor is de-activated. We then proceed back to the
top of the Flow Diagram and repeat the whole process.

The Flow Diagram is useful, as it helps us plan out the actual high-level or Assemblekrcode structure.

featured in Figure 2.

state = @

while (1)
read user settings (water temp, y as needed

if (lid_open = @)
switch (state

art button

rt_button_pressed)
close drain

turn on Fill lamp
turn on Wash lamp

fill tub // start
state = 1
case 1: f/ wait for tub to fill
fill tub // in case

it was pause
if (tub_full)
start timer
turn off Fill lamp // Wash
still on
start wash cycle
state = 2

case 2: J/ timed wash cycle
if (timer_paused) // in case
lid was open
resume timer
resume wash cycle

Page 7 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Figure 2: An example of possible pseudo code for a refrigerator

Review of the C Programming Language

Language Structure

The C programming language is well suited to developing embedded systems with microcontrollers. One of
the advanced features of C is its use of Pointers. Pointers allow advanced manipulation of semiconductor
registers within the chip, both in terms of their address (location) and contents (1’s and 0’s). Pointers, and
their use, are not covered in this workbook. Still, you are encouraged to investigate their power should you
wish to focus more on microcontroller technology as a career objective.

The C language itself is quite succinct, and therefore relatively easy to learn and
language, ‘procedural’, meaning that it facilitates step-by-step
microcontrollers put into practice very well. For example, a micro
be aware of multiple sensors connected to its inputs, such as; weigh
current temperature, drum pressure, actual drum speed, required d ed, i humidity etc. In
terms of its output pins, the microcontroller controls motors, he Iming functions, user
displays etc. The human operator may select various wash/dry re-programmed software
algorithms.

apply. C is a procedural

The C language can be used in this procedural way e
considered the lowest level high-level language, m
low (1 and 0) than other languages — alth
Machine Code.

nce its popularity. C tends to be
to the digital language of high and
is always the level directly above

Data Types

The table below shows the data in the C programming language.

Data Type Description
char [acter (integer)
signed char 3 t within the range -127 to +127
unsigned char but no sign, 0 to 255 at least
short nteger, -32k to +32k
unsigned short
int Integer. -32k to +32k
unsigned Integer. O to 64k
long Integer. -2 billion to +2 billion
unsigned long Integer. 0 to 4 billion
long long Integer. -9 quintillion to +9 quintillion
unsigned long long Integer. 0 to 18 quintillion
float Floating point decimal (32 bits max)
double Floating point decimal (64 bits max)
long double Floating point decimal (up to 128 bits max)

Page 8 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Program Flow

The C source code produced by a human is first of all sent to a Preprocessor, which converts directives
mentioned at the top of the C source code into actual values. Once this is done, the preprocessor will
generate a larger version of the C source code.

The expanded C source code is then directed to a Compiler, which essentially converts the C code into
Assembly Language.

Compiled code is then sent to an Assembler, which essentially assembles the code and transforms it into
Object Code.

The object code is subsequently directed to a Linker, which will link the code
header (*.h) files.

of files, including

Finally, the linked code is converted into Machine Code (a *.exe file istin of 1's 0’s).

Looping
There are three commonly used looping statements used b) ammers.
while

A ‘while’ loop will execute a group of statemen
example...

ile a certain condition is true. For

while (condition) {

statements;

}

Each time the ‘c
executed, the

tested before t
never executed |

ents will execute. Once the last statement in the group has
or the condition once more. Note here that the condition is
ents is executed. This could mean that the sequence of statements are
ains persistently false.

do while
A ‘do while’ loop will als ute a group of statements, but in this case the group of statements is executed
at least once before the ‘condition’ is tested for. For example...

do{
statements;

} while (condition);

Page 9 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

for

In a “for’ loop we may initialise a variable, then test for a condition, then modify a variable, all before
executing a group of statements. As long as the ‘condition’ is true, then the group of statements will be
executed. For example...

for (initialisation; condition; modification)

{

statements;

}

Branching

Branching out of a sequence of code may be performed in a numb ways
follows.

if

The ‘if’ statement can be used with a single statement or a graup atemen

if (condition)

{

st papular methods as

r example...

statement(s);

if-else

The ‘if-else’ statem s and tests whether a condition is true. If that is the case,

. Should the condition not be true, then the second block of

if (condition)
{
statement(s)_1;

else

statement(s)_2;

Page 10 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

switch-case

A switch statement is useful when a number of nested ‘if’ statements become too complicated and
cumbersome. A variable’s value is tested, and a number of ‘case’ statements are used to determine whether
there is a match with a series of possibilities and the variable’s value. If none of the case tests are true then
a ‘default’ statement(s) is executed. For example...

switch (age) {
case 16: printf(“You are 16”);
case 17: printf(“You are 17”);
case 18: printf(“You are 18”);
case 19: printf(“You are 19”);
case 20: printf(“You are 20”);

case 21: printf(“You are 21”);

default:

printf(“You are not aged between 16 and 2

Conditional Testing
Let’s assume that variable A is 0 and variab is 1. itional tests below may be used.

Operator Example

(A==B)
is not
true.

of two operands are equal or not. If the values are not equal, (A1=B)
then the condition becomes true. is true.

> Checks if the value of left operand is greater than the value of right operand. If yes, (A>B)is
then the condition becomes true. not
true.

Page 11 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

< Checks if the value of left operand is less than the value of right operand. If yes, then (A< B)is
the condition becomes true. true.
>= Checks if the value of left operand is greater than or equal to the value of right (A>=B)
operand. If yes, then the condition becomes true. is not
true.
<= Checks if the value of left operand is less than or equal to the value of right operand. (A <=B)
If yes, then the condition becomes true. is true.

Essential Guide - PIC16F690 g

Pinout and Block Diagram

VoD —= [‘ 5

RAS5/T1CKI/OSC1/CLKIN RAO/ANO/C1IN+/ICSPDAT/ULPWU
RA4/AN3/T1G/OSC2/CLKOUT RA1/AN1/C12IN-NREF/IICSPCLK
RA2/AN2/TOCKI/INT/C10UT
RCO/AN4/C2IN+
RC1/ANS/C12IN-
RC2/AN6G/P1D
[] == RB4/AN10/SDI/SDA
(]« RB5/AN11/RX/DT
[]=—= RB6/SCK/SCL

:‘r;ﬁf: Data Memory . .
Device vo 10"":1”[’ Comparators ;,',:‘;e:_;t SSP |ECCP+| EUSART
Flash SRAM |EEPROM (ch) -bi
(words) (bytes) (bytes)
PIC16F690 4096 256 256 18 12 2 2/1 Yes Yes Yes

Page 12 of 58 edexcel

Approved Centre

Unit Workbook 3 - Level 5 ENG — U46 Embedded Systems

© 2021 UniCourse Ltd. All Rights Reserved.

INT

I

13
Data Bus B, PORTA
Qi' Program Counter |<: -
Flash iL =[] RAGIANDIGT INHICSPDATIULPWU
Ak x14 e[| RATIANT/CT 2IN-VREFICSPCLK
Program , RAM Ir-L, L) RAZANZITOCKININT/C1OUT
Memo 8-Level Stack (13-bit) 258 bytes 1 RAAMELEN PP
Y File == RAYANZTI G/ OSCZCLKOUT
Registers =] RASIT1 CKIOSC1/CLKIN
o U T RAM Add
Bus r
ik PORTB
| Vi | Addr MUX
Instruction Reg
|| Direct Addr 7 T Indirect 5] RE4/AN10/SDISDA
= i | I 15 MRX/DT
| REBIBC K/ SCL
FSR Reg ﬁ e
Status Reg |9
8
7
N [5¢] RCD/ANSICZ IN+
3 5] RC1/ANSIC12IN-
Vi Power-up y =4 | RC2/ANG/P1D
\struction Timer "y ~[X| RCIIANTIPIC
]
Decode and @ Oscillator) Pé‘ RC4/CZOUT/P1E
Cantrol Start-up Timer A ;él RCS/ICCPUP1A
-] RCB/IANESS
OSCIELK Power-on 8 N %] RCTIANSISDO
Reset] N
Timing -
OSC2/CLKO | @eneration fe=s|| Watchdog m
Timer Ay
— N
@ Brown-out
Internal
Oscillator
Block

THICK

i

RX/DT

il

CCP1/
P1A o
P1BE P1C PID SDO SDA SCL S5

SDI SCK/

PRE ITTT

EUSART

Synchronous

ECCP+ Serial Port

AMNE ANS ANTO AN

i i il

I i

I77F

v

Analog-To-Digital Converter

2
Analog Comparators
and Reference

!

EEDAT

YT

VREF AMOD ANT ANZ AN ANS ANS ANE ANT C1IN- C1IN+ C10UT C2IN- C2IN+ C20UT

256 Bytes
Data
EEPROM

EEADR

L4

Page 13 of 58

edexcel

Approved Centre

	The Development Cycle
	Integrated Development Environment
	Assembler and High-Level Languages
	Compilers
	Simulators
	Debugging
	Code Structure: Flow Diagrams and Pseudo Code

	Review of the C Programming Language
	Language Structure
	Data Types
	Program Flow
	Looping
	while
	do while
	for

	Branching
	if
	if-else
	switch-case

	Conditional Testing

	Essential Guide - PIC16F690 Microcontroller
	Pinout and Block Diagram
	Pin Details
	Program Memory
	Data Memory
	Special Function and General-Purpose Registers (SFR’s/GPR’s)
	Bank 0
	Bank 1
	Bank 2
	Bank 3
	Status Register
	Option Register
	Interrupt Control Register
	Peripheral Interrupt Enable Register 1
	Peripheral Interrupt Enable Register 2
	Peripheral Interrupt Request Register 1
	Peripheral Interrupt Request Register 2
	Power Control Register
	PIC16F690.inc (Include File)
	Instruction Set
	Configuration Word

	Assembly Language – PIC16F690 Microcontroller Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	C Language – PIC16F690 Microcontroller Examples
	Example 6
	Example 7

	Recommended IDE’s
	MPLAB Xpress
	MPLABX

