
Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 1 of 58

Pearson BTEC Level 5 Higher Nationals in Engineering (RQF)

Unit 46: Embedded Systems

Unit Workbook 3
in a series of 4 for this unit

Learning Outcome 3

Coding, Simulation, Test, Debug
 Sam

ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 2 of 58

Contents
The Development Cycle ... 5

Integrated Development Environment .. 5

Assembler and High-Level Languages .. 5

Compilers ... 6

Simulators .. 6

Debugging .. 6

Code Structure: Flow Diagrams and Pseudo Code .. 6

Review of the C Programming Language ... 8

Language Structure .. 8

Data Types .. 8

Program Flow ... 9

Looping ... 9

while ... 9

do while .. 9

for ... 10

Branching ... 10

if .. 10

if-else .. 10

switch-case ... 11

Conditional Testing .. 11

Essential Guide - PIC16F690 Microcontroller .. 12

Pinout and Block Diagram .. 12

Pin Details ... 14

Program Memory ... 16

Data Memory ... 16

Special Function and General-Purpose Registers (SFR’s/GPR’s) .. 17

Bank 0 ... 18

Bank 1 ... 19

Bank 2 ... 20

Bank 3 ... 21

Status Register ... 22

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 3 of 58

Option Register .. 23

Interrupt Control Register .. 24

Peripheral Interrupt Enable Register 1 .. 25

Peripheral Interrupt Enable Register 2 .. 26

Peripheral Interrupt Request Register 1 .. 27

Peripheral Interrupt Request Register 2 .. 28

Power Control Register .. 29

PIC16F690.inc (Include File) ... 30

Instruction Set .. 41

Configuration Word ... 42

Assembly Language – PIC16F690 Microcontroller Examples .. 43

Example 1 ... 43

Example 2 ... 44

Example 3 ... 46

Example 4 ... 49

Example 5 ... 52

C Language – PIC16F690 Microcontroller Examples .. 53

Example 6 ... 53

Example 7 ... 55

Recommended IDE’s .. 57

MPLAB Xpress .. 57

MPLABX .. 57

 Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 5 of 58

The Development Cycle
Integrated Development Environment
An Integrated Development Environment (IDE) provides a full suite of tools to a software engineer to
facilitate the development of software applications, including code compilation to load onto a
microcontroller chip.

The IDE will usually offer a source code editor, which could be written in Basic, C or Assembly Language,
automation tools, code debugging features and possibly simulation facilities.

Microchip Technology Inc. offer a desktop-based IDE known as MPLABX and a browser-based IDE called
MPLAB Xpress, both of which offer the features mentioned above, plus an abundance of others. These two
IDE’s will feature prominently in this workbook.

Assembler and High-Level Languages
A high-level language is one in which a programmer may write computer code that is more readily
understandable for the human reader. Some examples of high-level languages are given below.

 Python
 C
 C++
 Arduino
 Assembly
 Rust
 C#
 Verilog
 VHDL
 LabView
 Elixir
 Ada
 D
 Forth
 TCL
 LadderLogic
 Erlang

In this workbook we will be considering C as our high-level language of choice, aimed at PIC microcontrollers
produced by Microchip Technology Inc.

Assembly Language is as close as you can get to the language of memory chips and software registers (known
as Machine Code, consisting of sequences of 1’s and 0’s). Assembly Language is far more difficult for the
inexperienced programmer to understand and is only beneficial (and more efficient) when the reader has a
deep understanding of the internal registers/ports available within the microcontroller. In this workbook,
we will look at the Assembly Language pertinent to PIC microcontrollers.

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 6 of 58

Compilers
As previously mentioned, we have High-level Languages and Assembly Language. Whichever language we
choose to write code in, a Compiler is a software application that will turn that code into Machine Language
to be executed on the microcontroller chip.

Simulators
A simulator will mimic the real-life functionality of the microcontroller chip. Most simulators are proprietary,
written by chip manufacturers. Some examples are;

 MPLABX
 PBLAB Xpress
 PICSimLab
 TINA
 gpsim
 Proteus

Debugging
Put simply, debugging is the process employed to find errors or bugs within computer code. Most debuggers
allow the programmer to step into, step out of, step over code, or blocks of code, using watch windows to
observe the specific effects of those lines or blocks of code on the actual functionality of the program.

Code Structure: Flow Diagrams and Pseudo Code
A Flow Diagram for a basic household refrigerator is shown in Figure 1.

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 7 of 58

Figure 1: Flow Diagram for a basic refrigerator

Here we see that the rectangular boxes contain commands, whereas the diamond shapes are decision
elements. Of course, we wish the refrigerator to function continually; hence the code must operate in a
continual loop, executing (hopefully) forever or until the power is switched off.

The internal temperature is measured and compared to the desired temperature set by the human
operator. Should the measured temperature be greater than the set temperature, the fridge is too warm,
so the compressor is activated. Another temperature comparison is then made; if the actual temperature is
no longer above the set temperature, then the compressor is de-activated. We then proceed back to the
top of the Flow Diagram and repeat the whole process.

The Flow Diagram is useful, as it helps us plan out the actual high-level or Assembler code structure.

Pseudo Code, on the other hand, is a technique whereby no particular programming language is selected,
but general ideas about how the code should look/appear are featured. A section of pseudo code is
featured in Figure 2.

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 8 of 58

Figure 2: An example of possible pseudo code for a refrigerator

Review of the C Programming Language
Language Structure
The C programming language is well suited to developing embedded systems with microcontrollers. One of
the advanced features of C is its use of Pointers. Pointers allow advanced manipulation of semiconductor
registers within the chip, both in terms of their address (location) and contents (1’s and 0’s). Pointers, and
their use, are not covered in this workbook. Still, you are encouraged to investigate their power should you
wish to focus more on microcontroller technology as a career objective.

The C language itself is quite succinct, and therefore relatively easy to learn and apply. C is a procedural
language, ‘procedural’, meaning that it facilitates step-by-step instructions very efficiently, as
microcontrollers put into practice very well. For example, a microcontroller within a washing machine will
be aware of multiple sensors connected to its inputs, such as; weight of clothing load, required temperature,
current temperature, drum pressure, actual drum speed, required drum speed, internal humidity etc. In
terms of its output pins, the microcontroller controls motors, heaters, fluid valves, timing functions, user
displays etc. The human operator may select various wash/dry cycles based upon pre-programmed software
algorithms.

The C language can be used in this procedural way extremely efficiently, hence its popularity. C tends to be
considered the lowest level high-level language, meaning that it is closer to the digital language of high and
low (1 and 0) than other languages – although Assembly Language is always the level directly above
Machine Code.

Data Types
The table below shows the data types available in the C programming language.

Data Type Description
char Smallest 8-bit character (integer)
signed char As char, but within the range -127 to +127
unsigned char Like char, but no sign, 0 to 255 at least
short A signed integer, -32k to +32k
unsigned short 0 to 65k
int Integer. -32k to +32k
unsigned Integer. 0 to 64k
long Integer. -2 billion to +2 billion
unsigned long Integer. 0 to 4 billion
long long Integer. -9 quintillion to +9 quintillion
unsigned long long Integer. 0 to 18 quintillion
float Floating point decimal (32 bits max)
double Floating point decimal (64 bits max)
long double Floating point decimal (up to 128 bits max)

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 9 of 58

Program Flow
The C source code produced by a human is first of all sent to a Preprocessor, which converts directives
mentioned at the top of the C source code into actual values. Once this is done, the preprocessor will
generate a larger version of the C source code.

The expanded C source code is then directed to a Compiler, which essentially converts the C code into
Assembly Language.

Compiled code is then sent to an Assembler, which essentially assembles the code and transforms it into
Object Code.

The object code is subsequently directed to a Linker, which will link the code to a library of files, including
header (*.h) files.

Finally, the linked code is converted into Machine Code (a *.exe file consisting only of 1’s and 0’s).

Looping
There are three commonly used looping statements used by computer programmers.

while
A ‘while’ loop will execute a group of statements cyclically, only while a certain condition is true. For
example…

while (condition) {

 statements;

}

Each time the ‘condition’ is true, the statements will execute. Once the last statement in the group has
executed, the program goes back and tests for the condition once more. Note here that the condition is
tested before the sequence of statements is executed. This could mean that the sequence of statements are
never executed if the ‘condition’ remains persistently false.

do while
A ‘do while’ loop will also execute a group of statements, but in this case the group of statements is executed
at least once before the ‘condition’ is tested for. For example…

do {

 statements;

} while (condition);

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 10 of 58

for
In a ‘for’ loop we may initialise a variable, then test for a condition, then modify a variable, all before
executing a group of statements. As long as the ‘condition’ is true, then the group of statements will be
executed. For example…

for (initialisation; condition; modification)

{

statements;

}

Branching
Branching out of a sequence of code may be performed in a number of ways, the most popular methods as
follows.

if
The ‘if’ statement can be used with a single statement or a group of statements. For example…

if (condition)

{

 statement(s);

}

if-else
The ‘if-else’ statement has two blocks of statements and tests whether a condition is true. If that is the case,
then the first block of statements is executed. Should the condition not be true, then the second block of
statements is executed. For example…

if (condition)

{

 statement(s)_1;

}

else

{

 statement(s)_2;

}

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 11 of 58

switch-case
A switch statement is useful when a number of nested ‘if’ statements become too complicated and
cumbersome. A variable’s value is tested, and a number of ‘case’ statements are used to determine whether
there is a match with a series of possibilities and the variable’s value. If none of the case tests are true then
a ‘default’ statement(s) is executed. For example…

switch (age) {

 case 16: printf(“You are 16”);

 case 17: printf(“You are 17”);

 case 18: printf(“You are 18”);

 case 19: printf(“You are 19”);

 case 20: printf(“You are 20”);

 case 21: printf(“You are 21”);

 default:

 printf(“You are not aged between 16 and 21”);

}

Conditional Testing
Let’s assume that variable A is 0 and variable B is 1. The conditional tests below may be used.

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, then the condition
becomes true.

(A == B)
is not
true.

!= Checks if the values of two operands are equal or not. If the values are not equal,
then the condition becomes true.

(A != B)
is true.

> Checks if the value of left operand is greater than the value of right operand. If yes,
then the condition becomes true.

(A > B) is
not
true.

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 12 of 58

< Checks if the value of left operand is less than the value of right operand. If yes, then
the condition becomes true.

(A < B) is
true.

>= Checks if the value of left operand is greater than or equal to the value of right
operand. If yes, then the condition becomes true.

(A >= B)
is not
true.

<= Checks if the value of left operand is less than or equal to the value of right operand.
If yes, then the condition becomes true.

(A <= B)
is true.

Essential Guide - PIC16F690 Microcontroller
Pinout and Block Diagram

Sam
ple

Unit Workbook 3 - Level 5 ENG – U46 Embedded Systems
© 2021 UniCourse Ltd. All Rights Reserved.

Page 13 of 58

Sam
ple

	The Development Cycle
	Integrated Development Environment
	Assembler and High-Level Languages
	Compilers
	Simulators
	Debugging
	Code Structure: Flow Diagrams and Pseudo Code

	Review of the C Programming Language
	Language Structure
	Data Types
	Program Flow
	Looping
	while
	do while
	for

	Branching
	if
	if-else
	switch-case

	Conditional Testing

	Essential Guide - PIC16F690 Microcontroller
	Pinout and Block Diagram
	Pin Details
	Program Memory
	Data Memory
	Special Function and General-Purpose Registers (SFR’s/GPR’s)
	Bank 0
	Bank 1
	Bank 2
	Bank 3
	Status Register
	Option Register
	Interrupt Control Register
	Peripheral Interrupt Enable Register 1
	Peripheral Interrupt Enable Register 2
	Peripheral Interrupt Request Register 1
	Peripheral Interrupt Request Register 2
	Power Control Register
	PIC16F690.inc (Include File)
	Instruction Set
	Configuration Word

	Assembly Language – PIC16F690 Microcontroller Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	C Language – PIC16F690 Microcontroller Examples
	Example 6
	Example 7

	Recommended IDE’s
	MPLAB Xpress
	MPLABX

