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2.1 Use of j Notation 
 

When we have circuits containing just resistors then life is so easy in terms of circuit analysis. Most useful 

circuits also contain capacitors and inductors (usually coils and windings). The introduction of capacitors and 

inductors into circuits causes ‘phase angles’ in our calculations. The study of these phase angles is made 

much easier by introducing complex numbers. 

From your level 3 studies you will have come across Inductive Reactance (XL) and Capacitive Reactance (XC). 

These terms are used to quantify the amount of ‘opposition’ caused by capacitors and inductors to changes 

in current or voltage. The term ‘reactance’ is brought about because capacitors cannot be charged or 

discharged in zero time, and inductors cannot be energised or de-energised in zero time. A good analogy for 

capacitors is the amount of water in a bathtub. It is impossible to fill a bathtub in zero time, and it’s also 

impossible to empty a bathtub in zero time. The amount of reactance from capacitors and inductors is a 

function of their manufactured properties and the frequency of operation. Let’s review the equations for 

these reactances… 

𝑋𝐿 = 2𝜋𝑓𝐿   [Ω] 

𝑋𝐶 =
1

2𝜋𝑓𝐶
   [Ω] 

where; 

 𝑋𝐿 = 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑂ℎ𝑚𝑠, Ω) 

 𝑋𝐶 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑂ℎ𝑚𝑠, Ω) 

 𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝐻𝑒𝑟𝑡𝑧, 𝐻𝑧) 

 𝐿 = 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝐻𝑒𝑛𝑟𝑖𝑒𝑠, H) 

 𝐶 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝐹𝑎𝑟𝑎𝑑𝑠, 𝐹) 

 

Consider the RLC circuit below… 

 

We can draw a phasor diagram for this circuit, as follows… 
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The black arrow represents resistance. The current through a resistor is always in phase with the voltage 

across it. We place resistance on the horizontal axis. 

The red arrow represents inductive reactance. We see that this leads the resistance by 90 degrees 

(𝜋 2 𝑟𝑎𝑑𝑠.⁄ ). We name this axis the ‘+j axis’. Mathematicians tend to designate this the ‘+i’ (imaginary) axis. 

Engineers do not use i since it clashes with the current symbol, so we use ‘j’ instead. 

The blue arrow represents capacitive reactance. We see that this lags the resistance by 90 degrees 

(𝜋 2 𝑟𝑎𝑑𝑠.⁄ ). We designate this the ‘-j’ axis. 

The dashed lines represent a graphical method of finding the resultant of these phasors, drawn in green. We 

term this resultant the impedance of the circuit and mark it with ‘r’ for resultant. This resultant impedance 

makes an angle with the horizontal axis, marked with 𝜙.  

The resultant impedance is given the symbol Z for calculation purposes. We see that the green resultant has 

both horizontal and vertical components. The horizontal contribution is known as the real component and 

the vertical contribution is known as the imaginary component. 

We may use Pythagoras’ theorem to denote impedance as follows… 

𝑍2 = 𝑅2 + 𝑋2 

∴    𝑍 = √𝑅2 + 𝑋2   [Ω] 

In complex number notation we represent Z as… 

𝒁 = 𝑹 + 𝒋(𝑿𝑳 − 𝑿𝑪)   [𝛀] 
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Worked Example 3 

Worked Example 4 

𝑗 × 𝑗 = 𝑗2 = √−1 × √−1 = −10.5 × −10.5 = −10.5+0.5 = −11 = −1 

6𝑗

3𝑗
= 2 

A circuit current calculation involves the division of a voltage by an impedance… 

𝒊 =
𝟏𝟎 − 𝒋𝟑𝟎

𝟑 + 𝒋𝟒

Determine the value of the current. 

To perform such calculations we need to determine the complex conjugate of the denominator and then 

multiply this complex conjugate by both the numerator and denominator. The process is… 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 1

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 2
=

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 1

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 2
×

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 2

The use of the complex conjugate actually simplifies our task because the new denominator becomes a 

purely real number. 

The complex conjugate of a complex number is simply the same complex number with the sign on the j 

term negated. So, we can write… 

𝒊 =
𝟏𝟎 − 𝒋𝟑𝟎

𝟑 + 𝒋𝟒
=

(𝟏𝟎 − 𝒋𝟑𝟎)

(𝟑 + 𝒋𝟒)
×

(𝟑 − 𝒋𝟒)

(𝟑 − 𝒋𝟒)

=
30 − 𝑗40 − 𝑗90 − −𝑗2120

9 − 𝑗12 + 𝑗12 + −𝑗216

We know that 𝑗2 = −1 so we may now say… 

=
30 − 𝑗40 − 𝑗90 − −(−1) × 120

9 − 𝑗12 + 𝑗12 + −(−1) × 16
=

30 − 𝑗40 − 𝑗90 − 120

9 − 𝑗12 + 𝑗12 + 16
=

−90 − 𝑗130

25

= (−𝟑. 𝟔 − 𝒋𝟓. 𝟐)   [𝑨] 

Such calculations are rather messy, as you can see. Fortunately, using the Polar Form of complex numbers 

when performing divisions leads to shorter calculations. 

A circuit current calculation involves the division of a voltage by an impedance… 
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We notice that phase voltage 1 is entirely across phase impedance 1. We may therefore say… 

𝑖1 =
𝑉1

𝑍1
=

230∠0𝑜

115∠100
= 2∠−10𝑜   [𝐴] 

The situation is similar for the other two phases… 

𝑖2 =
𝑉2

𝑍2
=

230∠120𝑜

5∠−600
= 46∠180𝑜   [𝐴] 

𝑖3 =
𝑉3

𝑍3
=

230∠240𝑜

10∠400
= 23∠200𝑜   [𝐴] 

The sum of these three phase currents is equal to the neutral current (𝐼𝑁) in this star configuration. 

Unfortunately, we cannot add Polar quantities (division and multiplication are ok though, as we’ve seen) so 

we need to convert each of them into 𝑎 + 𝑗𝑏 form. Some quick conversions on the calculator yield… 

𝑖1 =
𝑉1

𝑍1
=

230∠0𝑜

115∠100
= 2∠−10𝑜  ≡ 1.97 − 𝑗0.35  [𝐴] 

𝑖2 =
𝑉2

𝑍2
=

230∠120𝑜

5∠−600
= 46∠180𝑜  ≡ −46 + 𝑗0  [𝐴] 

𝑖3 =
𝑉3

𝑍3
=

230∠240𝑜

10∠400
= 23∠200𝑜  ≡ −21.61 − 𝑗7.87  [𝐴] 

Adding the complex numbers gives… 

𝒊𝑵 = (𝟏. 𝟗𝟕 − 𝟒𝟔 − 𝟐𝟏. 𝟔𝟏) + 𝒋(−𝟎. 𝟑𝟓 + 𝟎 − 𝟕. 𝟖𝟕) = −𝟔𝟓. 𝟔𝟒 − 𝒋𝟖. 𝟐𝟐 ≡ 𝟔𝟔. 𝟏𝟓∠−𝟏𝟕𝟐. 𝟖𝟔𝒐  [𝑨] 

 

Let us now consider the voltage between two separate phases. Look at the phasor diagram below… 
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The diagram on the left illustrates phase 1 in red (𝑉𝑃1). For the sake of analytical simplicity it is given a 

magnitude of 1 volt, although this could be scaled up to any voltage you like. The solid blue phasor represents 

phase 2, which is 120 degrees out of phase with phase 1. To work out the difference in voltage between 

these two phases we must find invert phase 2, giving −𝑉𝑃2, shown dashed in blue. Our task is to find the 

resultant of 𝑉𝑃1 and −𝑉𝑃2. This task is performed in the diagram on the right. 

The green phasor represents the resultant line voltage, 𝑉𝐿. This is formed by drawing a parallelogram based 

upon 𝑉𝑃1 and −𝑉𝑃2. To work out the magnitude of the line voltage in green we apply Pythagoras’ theorem… 

|𝑉𝐿| = √[(1 + 0.5)2 + (
√3

2
)

2

] 

 

|𝑽𝑳| = √[(
𝟑

𝟐
)

𝟐

+ (
√𝟑

𝟐
)

𝟐

] = √
𝟗

𝟒
+

𝟑

𝟒
= √

𝟏𝟐

𝟒
= √𝟑   𝒗𝒐𝒍𝒕𝒔 

 

This then proves that the line voltage (from phase to phase) is √3 times the phase voltage. Therefore, if we 

have a phase voltage of 230 V then the line voltage will be √3 × 230 = 398.37 𝑣𝑜𝑙𝑡𝑠. This figure tends to 

be rounded to 400 V in the UK since it is impossible to maintain an exact voltage on the distribution system. 

In the UK the consumer supply voltage is 230 V +10%/-6%. This means that the phase voltage can rise to 

253V and fall to 216.2 V. If we look at the line voltage then it can be as high as 438.2 volts and as low as 374.5 

volts. The figure of 438.2 volts for maximum line voltage tends to be rounded to 440 volts for normal 

everyday use and signage. 

Sam
ple



Unit Workbook 2 - Level 5 ENG – U52 Further Electrical and Digital Principles 
© 2018 UniCourse Ltd. All Rights Reserved 

 

 

 
Page 12 of 16 

Worked Example 6 

Worked Example 7 

 

 

Three identical coils, each of resistance 𝟐𝟎𝛀 and inductance 𝟐𝟎𝟎𝒎𝑯, are connected in a Delta 

configuration to a 230 volt, 50Hz 3-phase supply. Determine the magnitude of each load current. 

The first step here is to determine the load impedance on each phase… 

𝑋𝐿 = 2𝜋𝑓𝐿 = 2𝜋 × 50 × 0.2 = 20𝜋 = 62.83Ω 

∴    𝑍𝐿 = 20 + 𝑗62.83  ≡ 65.94∠72.34𝑜 [Ω] 

The circuit is shown below. 

 

We already know that the line voltage magnitude is √3 times the phase voltage… 

𝐿𝑖𝑛𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √3 × 230 = 398.37 𝑉 

We also notice that each load impedance has a line voltage connected. We simply need to divide our 

magnitudes for voltage and impedance to find the magnitude of each load current… 

𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒍𝒐𝒂𝒅 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 =  
𝟑𝟗𝟖. 𝟑𝟕

𝟔𝟓. 𝟗𝟒
= 𝟔. 𝟎𝟒 𝑨 

 

There are two common ways to measure the total effective power dissipated in the loads. The two-

wattmeter method is employed for balanced loads. The three-wattmeter method is employed for balanced 

or unbalanced loads.  
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Video 

 

Draw a star-star 230V, 50Hz, 3-phase system with BALANCED loads of 𝟐𝟎∠𝟑𝟎𝒐 [Ω] on the TINA-TI 

simulator. Use both the two-wattmeter and three-wattmeter methods to determine the total effective 

power dissipated in the load system. 

   Useful starter video on TINA-TI 

 

The TINA-TI free simulator is available here. Before we draw the two measurement circuits we need to know 

how to represent a load impedance of 20∠30𝑜 [Ω] at 50Hz.  

Convert the Polar form of the given impedance into its complex number form using a calculator… 

20∠300 ≡ 17.32 + 𝑗10 

We see that the j part is positive so we are looking for an inductor. To determine the value of the inductor 

we proceed as follows… 

𝑋𝐿 = 2𝜋𝑓𝐿 = 10   ∴    𝐿 =
𝑋𝐿

2𝜋𝑓
=

10

2𝜋 × 50
= 0.032 𝐻 

So each load consists of a resistor of 17.32Ω and a series inductor of 0.032 H. We then place these into our 

star load and construct the measurement circuits. The simulation is started by clicking ANALYSIS->AC 

ANALYSIS->CALCULATE NODAL VOLTAGES… 
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Worked Example 9 

Challenge

ee 

Here we can see that the neutral current will comprise of 𝑖2 + 𝑖3. Let’s do the calculation… 

𝑖𝑁 = 𝑖2 + 𝑖3 =
𝑉2

𝑍2
+

𝑉3

𝑍3
=

230∠120𝑜

5∠−60𝑜
+

230∠240𝑜

10∠400
= 46∠180𝑜 + 23∠200𝑜 

Since we cannot directly add Polar numbers we must convert to complex number form, do the addition, then 

convert back to Polar form… 

(−46 + 𝑗0) + (−21.61 − 𝑗7.87) = −67.61 − 𝑗7.87 ≡ 68.1∠−173.40   [𝐴] 

 

Note: When you see a load impedance with a negative angle then the reactive component involved is a 

capacitance rather than an inductance. This is handy to know when you are checking your calculations on 

the TINA-TI simulator. 

 

 

 

Reproduce the above results on the TINA-TI simulator. 

 

 

 

 

What about the situation where we have impedance 1 developing an open circuit? In this case we would like 

to determine the current flowing in impedance 2. Let’s look at the scenario again… 

 

The current flowing in 𝑍2 would simply be given by 𝑉2 𝑍2⁄ . We may therefore easily calculate… 

𝑖2 =
𝑉2

𝑍2
=

230∠120𝑜

5∠−60𝑜
= 46∠180𝑜 = −46 𝐴 

When checking these calculations on the simulator you may get a negative sign for current, rather than an 

expected positive quantity. It depends which way around you have placed your supply voltage. Try it and 

see. 
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