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1.1 Formal Steady-State Circuit Analysis 
Determinants 
When we are examining circuits with two loops, we arrive at two simultaneous equations with two 

unknowns. A circuit with three loops will produce three simultaneous equations with three unknowns.  

For example, two loops … 

 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0 

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0 

 

The objective is to find those values for 𝑥 and 𝑦. Using Determinants is usually an effective method to find 

these. Let’s use a D to represent a determinant, and then explain how they are used … 

 

𝑥

𝐷𝑥
=

−𝑦

𝐷𝑦
=

1

𝐷
 

Where; 

𝐷𝑥 = |
𝑏1 𝑐1

𝑏2 𝑐2
| = (𝑏1 × 𝑐2) − (𝑏2 × 𝑐1) 

𝐷𝑦 = |
𝑎1 𝑐1

𝑎2 𝑐2
| = (𝑎1 × 𝑐2) − (𝑎2 × 𝑐1) 

𝐷 = |
𝑎1 𝑏1

𝑎2 𝑏2
| = (𝑎1 × 𝑏2) − (𝑎2 × 𝑏1) 

 

The determinant of a square matrix is very useful in finding unknown quantities (like currents, voltages etc.) 

in systems of equations. Let’s see if we can find the determinant for an actual 2 X 2 matrix… 

|
6 −2
3 4

| = (6 × 4) − (−2 × 3) = 24 + 6 = 30 

Notice that the determinant has been placed within special symbols | |. 

What we do is to multiply the numbers on the leading diagonal (6 X 4) and then subtract the numbers on the 

other diagonal (-2 X 3). That obviously gives 30. This is non-zero, so that tells us that the solution should be 

unique (i.e. we can easily find the unknown quantities). 

A few more examples… 

|
5 3
2 4

| = 14 |
−6 8
2 −4

| = 8 |
−6 2
9 3

| = −36 |
3 18
2 12

| = 0 
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Now let’s see what happens with the determinant of a 3 x 3 matrix. Each cell (element) in a 3 x 3 matrix has 

a minor, which is found by covering up the corresponding row and column which contains that minor, and 

then evaluating its determinant. Let’s look at an example … 

[
1 2 3
4 5 6
7 8 9

] 

 

The minor of element 4 is obtained by covering up its row and column, like this … 

 

[
1 2 3
4 5 6
7 8 9

] 

Now remove those red elements and we have … 

 

[
2 3
8 9

] 

Change this matrix into a determinant and that will be the minor of element 4 … 

 

|
2 3
8 9

| = (2 × 9) − (3 × 8) = 18 − 24 = −𝟔 

So, the minor of element 4 is -6. 

There is still a bit more to consider. We have a sign associated with each minor, and this is really important. 

Let’s see how this sign ‘pattern’ works … 

(
+ − +
− + −
+ − +

) 

 

We see that element 4 lives on row 2 column 1, which requires a ‘-‘ sign. We therefore need to write … 

 

−(−6) = 6 

 

Once we introduce the sign to a minor we call it the cofactor. 

Now we are in a position to evaluate the determinant of a 3 x 3 matrix. Let’s look at an example … 
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|
4 2 −1
6 −2 0
1 −4 8

| 

 

We can actually pick any row or column we like to determine the sum of products of any row or column and 

its cofactors. Why make life hard for ourselves when we see that there is a 0 in column 3, row 2; making 

those multiplications zero and shortening our work. Here’s how it goes … 

 

|
4 2 −1
6 −2 0
1 −4 8

| = −6 |
2 −1

−4 8
| + (−2) |

4 −1
1 8

| + 0 |
4 2
1 −4

| 

 

= −6 |
2 −1

−4 8
| + (−2) |

4 −1
1 8

| 

 

= −6((2 × 8) − (−1 × −4)) − 2((4 × 8) − (−1 × 1)) 

 

=  −6(16 − 4) − 2(32 − −1) 

= −6(12) − 2(33) 

= −72 − 66 =  −𝟏𝟑𝟖 

 

Please test this out with this online calculator. You will find that it is correct. 

Now we are in a position to put determinants to very good use in our circuit analyses … 

 

Mesh Analysis 
When we talk of a ‘steady state’ DC analysis we are effectively saying that all capacitors are fully charged and 

all inductors have fully energised their magnetic fields. In this scenario, capacitors can be replaced with open 

circuits and inductors replaced with short circuits. 

What this means is that should we have a steady-state series RC circuit connected across a battery,  because 

the capacitor is considered to be open circuit in the steady state, no current flows – all of the battery voltage 

is across the capacitor. 
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If we considered a steady-state series RL circuit connected across a battery, because the inductor is 

considered to be a short circuit in the steady-state, the resistor will effectively be connected directly across 

the battery – current will be given by the battery voltage divided by the resistor value. 

A circuit mesh is simply a closed loop. Let’s look at a circuit which contains two meshes … 

 

Figure 1: A two-mesh DC circuit 

Here V1, R1 and R3 form mesh 1. V2, R2 and R3 form mesh 2. Let’s indicate the circulating currents in each 

mesh … 

 

Figure 2: A two-mesh DC circuit with circulating currents 

 

In mesh analysis we remember Kirchoff’s Voltage Law (KVL) – the sum of voltages in any closed loop (mesh) 

is zero. With this in mind, let’s start the analysis of these meshes. 
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Mesh 1 

𝐼1𝑅1 + (𝐼1 + 𝐼2)𝑅3 = 10 

∴      (𝑅1 + 𝑅3)𝐼1 + 𝑅3𝐼2 − 10 = 0 

Put in the resistor values… 

5𝐼1 + 4𝐼2 − 10 = 0     [𝟏] 

 

Mesh 2 

𝐼2𝑅2 + (𝐼2 + 𝐼1)𝑅3 = 20 

∴      𝑅3𝐼1 + (𝑅2 + 𝑅3)𝐼2 − 20 = 0 

Put in the resistor values… 

4𝐼1 + 6𝐼2 − 20 = 0     [𝟐] 

 

Let’s bring together equations [1] and [2] because they describe the circuit behaviour, and will form the basis 

of our analysis using determinants. 

5𝐼1 + 4𝐼2 − 10 = 0     [𝟏] 

4𝐼1 + 6𝐼2 − 20 = 0     [𝟐] 

The determinants are … 

𝐷𝐼1 = |
4 −10
6 −20

| = (4 × −20) − (−10 × 6) = −80 − −60 = −80 + 60 = −20 

𝐷𝐼2 = |
5 −10
4 −20

| = (5 × −20) − (−10 × 4) = −100 − −40 = −100 + 40 = −60 

𝐷 = |
5 4
4 6

| = (5 × 6) − (4 × 4) = 30 − 16 = 14 

 

Earlier we discovered … 

𝑥

𝐷𝑥
=

−𝑦

𝐷𝑦
=

1

𝐷
 

 

But, we are not using 𝑥 and 𝑦 here, so we replace them with 𝐼1 and 𝐼2 … 

𝐼1

𝐷𝐼1
=

−𝐼2

𝐷𝐼2
=

1

𝐷
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∴      𝑰𝟏 =
𝐷𝐼1

𝐷
=

−20

14
= −𝟏. 𝟒𝟐𝟗 𝑨 

∴      𝑰𝟐 =
−𝐷𝐼2

𝐷
=

−(−60)

14
=

60

14
= 𝟒. 𝟐𝟖𝟔 𝑨 

Using the MicroCap simulator, we perform a Dynamic DC analysis on this circuit to prove that our method 

and calculations are correct … 

Figure 3: A two-mesh DC circuit with current simulations 

Although we initially assumed that our circulating 𝐼1 current was flowing clockwise, the analysis actually 

proves that it is flowing anticlockwise (the current arrow is pointing downwards for 1.429 A). 

Nodal Analysis 
Nodal analysis relies on Kirchoff’s Current Law (KCL) – the algebraic sum of currents at any junction is zero. 

Let us again look at the circuit analysed in the previous section … 

Figure 4: A 4-node DC circuit 
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