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1 Types of motion: 
1.1 Simple harmonic motion. 
A particle is said to be under Simple Harmonic Motion (SHM) if its acceleration along a line is directly 
proportional to its displacement from a fixed point on that line. 
Consider the motion of a particle A, rotating in a circle with a constant angular velocity ω, as shown 
in Figure 1 (a). 
 

 
Figure 1 Simple Harmonic Motion 

 
Consider now the vertical displacement of A from the x-axis, as shown by the distance yc. If P is rotating at 
a constant angular velocity ω then the periodic time 𝜏𝜏 to travel an angular distance of 2π, is given by: 

𝝉𝝉 = 𝟐𝟐𝟐𝟐
𝝎𝝎

            (Eq 1) 
Let f = frequency of motion C (in Hertz), where 

𝒇𝒇 = 𝟏𝟏
𝒕𝒕

= 𝝎𝝎
𝟐𝟐𝟐𝟐

           (Eq 2) 
To determine whether SHM is taking place, consider the motion of A in the vertical direction (y-axis). 
Now yC = OA sin ωt, i.e., 

𝒚𝒚 = 𝒓𝒓 𝐬𝐬𝐬𝐬𝐬𝐬𝝎𝝎𝒕𝒕, where t = time in seconds       (Eq 3) 

Plotting of equation (Eq 3) against t results in the sinusoidal variation for displacement, as shown in 
Figure 1 (b). 
We know that vA = ωr, which is the tangential velocity of the particle A. From the velocity vector diagram, 
at the point A on the circle of Figure 1 (a), 

𝒗𝒗𝒄𝒄 = 𝒗𝒗𝑨𝑨 𝐜𝐜𝐜𝐜𝐬𝐬 𝜽𝜽 = 𝒗𝒗𝑨𝑨 𝐜𝐜𝐜𝐜𝐬𝐬𝝎𝝎𝒕𝒕         (Eq 4) 

Plotting of equation (Eq 4) against t results in the sinusoidal variation for the velocity vC, as shown in 
Figure 1 (b). 
The centripetal acceleration of A = 𝑎𝑎𝐴𝐴 = 𝜔𝜔2𝑟𝑟 

Now  𝑎𝑎𝐶𝐶 = −𝑎𝑎𝐴𝐴 sin𝜃𝜃, ∴ 𝒂𝒂𝑪𝑪 = −𝝎𝝎𝟐𝟐𝒓𝒓 𝐬𝐬𝐬𝐬𝐬𝐬𝝎𝝎𝒕𝒕      (Eq 5) 

Plotting equation (Eq 5) against t results in the sinusoidal variation for the acceleration at C, aC, as shown in 
Figure 1 (b). 

Substituting equation (Eq 3) into equation (Eq 5) gives: 

𝒂𝒂𝑪𝑪 = −𝝎𝝎𝟐𝟐𝒚𝒚𝑪𝑪           (Eq 6) 
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Equation (Eq 6) shows that the acceleration along the y-axis is directly proportional to the displacement 
along this line, therefore the point C is moving with SHM. Now, 

𝑇𝑇 = 2𝜋𝜋
𝜔𝜔

 , but from equation (Eq 6)  𝑎𝑎𝐶𝐶 = −𝜔𝜔2𝑦𝑦𝐶𝐶    i.e.   𝜔𝜔2 = 𝑎𝑎
𝑦𝑦

  

Therefore, 𝑇𝑇 = 2𝜋𝜋

�
𝑎𝑎
𝑦𝑦

  or 𝑇𝑇 = 2𝜋𝜋�𝑦𝑦
𝑎𝑎

 i.e. 𝑇𝑇 = 2𝜋𝜋�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

 

In general, from equation (Eq 6)  𝒂𝒂 + 𝝎𝝎𝟐𝟐𝒚𝒚 = 𝟎𝟎      (Eq 7) 

1.2 Natural frequency of vibration in mass-spring systems. 
1.2.1 The Spring-Mass System vibrating horizontally 
Consider a mass m resting on a smooth surface and attached to a spring of stiffness k, as shown in Figure 2. 

 
Figure 2 Horizontal Spring-Mass System 

If the mass is given a small displacement x, the spring will exert a resisting force of kx, 
i.e.  𝐹𝐹 = −𝑘𝑘𝑘𝑘 But  𝐹𝐹 = 𝑚𝑚𝑎𝑎 Hence,  𝑚𝑚𝑎𝑎 = −𝑘𝑘𝑘𝑘  
or, 𝑚𝑚𝑎𝑎 + 𝑘𝑘𝑘𝑘 = 0  or, 𝒂𝒂 + 𝒌𝒌

𝒎𝒎
𝒙𝒙 = 𝟎𝟎      (Eq 8) 

Equation (Eq 8) shows that this mass is oscillating (or vibrating) in SHM, or according to equation (Eq 7). 

Comparing (Eq 7) with (Eq 8), we see that; 𝜔𝜔2 = 𝑘𝑘
𝑑𝑑

 from which 𝜔𝜔 = �𝑘𝑘
𝑑𝑑

    

Now 𝑇𝑇 = 2𝜋𝜋
𝜔𝜔

= 2𝜋𝜋�𝑑𝑑
𝑘𝑘

 and f = frequency of oscillation or vibration. 

i.e. 𝒇𝒇 = 𝝎𝝎
𝟐𝟐𝟐𝟐

= 𝟏𝟏
𝟐𝟐𝟐𝟐
�𝒌𝒌
𝒎𝒎

         (Eq 9) 

1.2.1 The Spring-Mass System vibrating horizontally 
Consider a mass m, supported by a vertical spring of stiffness k, as shown in Figure 3. In this equilibrium 
position, the mass has an initial downward static deflection of yo. If the mass is given an additional 
downward displacement of y and then released, it will vibrate vertically. Sam
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Figure 3 Vertical Spring-Mass System 

The force exerted by the spring  = −𝑘𝑘(𝑦𝑦0 + 𝑦𝑦)  

Therefore, 𝐹𝐹 = 𝑚𝑚𝑚𝑚 = −𝑘𝑘(𝑦𝑦0 + 𝑦𝑦) = 𝑚𝑚𝑎𝑎 i.e. 𝑓𝑓 = 𝑚𝑚𝑚𝑚 = −𝑘𝑘𝑦𝑦0 − 𝑘𝑘𝑦𝑦 = 𝑚𝑚𝑎𝑎 

But  𝑘𝑘0 = 𝑚𝑚𝑚𝑚,  hence,  𝐹𝐹 = 𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑦𝑦 = 𝑚𝑚𝑎𝑎 

Thus, 𝑚𝑚𝑎𝑎 + 𝑘𝑘𝑦𝑦 = 0  or,  𝑎𝑎 + 𝑘𝑘
𝑑𝑑
𝑦𝑦 = 0 

i.e. SHM takes place and periodic time, 

𝑻𝑻 = 𝟐𝟐𝟐𝟐�𝒎𝒎
𝒌𝒌

       (Eq 10) 

And frequency, 𝒇𝒇 = 𝝎𝝎
𝟐𝟐𝟐𝟐

= 𝟏𝟏
𝟐𝟐𝟐𝟐
�𝒌𝒌
𝒎𝒎

      (Eq 11) 

Comparing equations (Eq 9) and (Eq 11), it can be seen that there is no difference in whether the spring is 
horizontal or vertical. 

Equations (Eq 9) and (Eq 11) give the natural frequency of vibration, which tells us the frequency with 
which an object would vibrate when disturbed. For example, when you pluck a guitar string it vibrates with 
its natural frequencies (harmonics). The stiffness of the guitar string varies as you press it against a 
different fret and so does its frequency and the sound it ultimately produces. 

All bodies have natural frequencies because all bodies have mass and stiffness, that is, there is repetitive 
inter-conversion between kinetic energy (stored by the mass) and Potential energy (stored by the 
stiffness). Mechanical vibration is essentially an interplay between inertial and elastic forces, so even air 
has natural frequencies dependent on the volume and shape of the enclosure (think acoustic cabinets or 
musical instruments!). 
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In the spring-mass system described here, once oscillations start they would carry on ad infinitum, unless 
some external force intervened. In real systems this external intervention is called damping and is 
essentially a leakage path for the energy in the system. Damping occurs in all real systems. 

2 Damped systems: 
2.1 Restating the equations of motion. 

 
Figure 4 Undamped Mass-Spring System 

Xxx shows a mass, m suspended from a spring of natural length (l) and modulus of elasticity (λ). If the 
elastic limit of the spring is not exceeded and the mass hangs in equilibrium, the spring will extend by an 
amount, e, such that, by Hooke’s law the tension in the spring, T, is given by; 

 𝑻𝑻 = 𝝀𝝀𝝀𝝀
𝒍𝒍

            (Eq 12) 

For system equilibrium, this will be balanced by the weight so; 𝒎𝒎𝒎𝒎 = 𝑻𝑻 = 𝝀𝝀𝝀𝝀
𝒍𝒍

  (Eq 13) 

If the spring is pulled down a further distance, x, (with x positive indicating downwards) the restoring force 
will now be the new tension in the spring, T′, given by T′ = 𝜆𝜆(𝑑𝑑+𝑥𝑥)

𝑑𝑑
 and so the net force acting downwards 

is; 
𝑚𝑚𝑚𝑚 − T′ = mg − 𝜆𝜆(𝑑𝑑+𝑥𝑥)

𝑑𝑑
= 𝑚𝑚𝑚𝑚 − 𝜆𝜆𝑑𝑑

𝑑𝑑
− 𝜆𝜆𝑥𝑥

𝑑𝑑
  

 
but from equation (Eq 13) 𝑚𝑚𝑚𝑚 = 𝜆𝜆𝑑𝑑

𝑑𝑑
  

So, the net force acting downwards = 𝜆𝜆𝑥𝑥
𝑑𝑑

       (Eq 14)  

From Newtons 2nd Law,  𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 𝑘𝑘 𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎 = 𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

   (Eq 15) 
So, combining equations (Eq 14) and (Eq 15) gives; 
 

𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 𝜆𝜆𝑥𝑥
𝑑𝑑

= 0          (Eq 16) 

Equation (Eq 13) is a second-order differential equation with dependent variable x (displacement) and 
independent variable t (time) and system parameters m and k. TWO initial conditions are set, usually the 
mass’s initial displacement from some datum and its initial velocity. (Note that velocity = 𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
 ) 
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Since the system above is unforced, any motion of the mass will be due to the initial conditions ONLY. 
Assume that the initial conditions are given as x (0) = -2 and v (0) = +4. Further, assume that downward is 
the positive direction, distance is in centimetres and t is in seconds. These initial conditions say that at t = 
0, the mass is instantaneously 2cm above the datum and travelling with a velocity of 4 cm/s in the 
downwards direction. 

2.2 The Unforced mass-spring-damper systems. 
The above system is unrealistic since it does not account for damping. Damping can be introduced into the 
system physically, schematically and mathematically by incorporating all resistances into a dashpot as 
shown in Figure 5. 
It can be shown that in such cases the resistance to motion is directly proportional to the velocity of the 
mass and, naturally, opposes the motion. This is not unreasonable since the faster the mass moves, the 
greater the resistance is exerted upon it (compare how much more difficult it is running, rather than 
walking, through water). 

 
Figure 5 The Unforced Mass-Spring-Damper System 

So, the damping force, D can be represented by 𝐷𝐷 = −𝑅𝑅 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

    (Eq 17) 

And R is the constant of proportionality and is called the Damping Factor. For all real systems 𝑅𝑅 > 0. 

The inclusion of the damping factor modifies the equations of the previous case as follows: 

Here, the net downward force will be; 

 

𝑚𝑚𝑚𝑚 − T′ − D = mg − 𝜆𝜆(𝑑𝑑+𝑥𝑥)
𝑑𝑑

− 𝑅𝑅 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= −𝜆𝜆𝑥𝑥
𝑑𝑑
− 𝑅𝑅 𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
  

And, again using Newton’s 2nd Law of motion, this results in; 

𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 𝑅𝑅 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

+ 𝜆𝜆𝑥𝑥
𝑑𝑑

= 0        (Eq 18) 

Or 𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 𝑅𝑅 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑘𝑘 = 0        (Eq 19)  

Where 𝑘𝑘 = 𝜆𝜆
𝑑𝑑
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