Unit 22:	Electronic Circuits and Devices
Unit code	F/615/1496
Unit level	4
Credit value	15

Introduction

Electronics is all around us today: in our homes, the workplace, cars and even on or in our bodies. It's hard to believe that it was only in 1947 that the transistor was developed by American physicists John Bardeen, Walter Brattain, and William Shockley. The invention of the transistor paved the way for cheaper radios, calculators and computers.

This unit introduces students to the use of electronics manufacturers' data to analyse the performance of circuits and devices, the operational characteristics of amplifier circuits, the types and effects of feedback on a circuit performance, and the operation and application of oscillators. They will also be introduced to the application of testing procedures to electronic devices and circuits, and use the findings of the tests to evaluate their operation.

Among the topics included in this unit are: power amplifiers, class A, B and AB; operational amplifiers, inverting, non-inverting, differential, summing, integrator, differentiator; types such as open, closed, positive and negative feedback; frequency, stability, frequency drift, distortion, amplitude, wave shapes and testing procedures.

On successful completion of this unit students will be able to determine the operational characteristics of amplifier circuits, investigate the types and effects of feedback on an amplifier's performance, examine the operation and application of oscillators and apply testing procedures to electronic devices and circuits.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Determine the operational characteristics of amplifier circuits.
- 2. Investigate the types and effects of feedback on an amplifier's performance.
- 3. Examine the operation and application of oscillators.
- 4. Apply testing procedures to electronic devices and circuits.

Essential Content

LO1 Determine the operational characteristics of amplifier circuits

Operational characteristics:

Power amplifiers: class A, B and AB

Operational amplifiers: inverting, non-inverting, differential, summing, integrator, differentiator, comparator, instrumentation, Schmitt trigger, active filters

Gain, bandwidth, frequency response, input and output impedance

Distortion and noise

LO2 Investigate the types and effects of feedback on an amplifier's performance

Types and effects:

Types including open, closed, positive and negative feedback

Effect of feedback on gain, bandwidth, distortion, noise, stability, input and output impedance

LO3 Examine the operation and application of oscillators

Operation and application:

Types of oscillators such as Wien bridge, Twin-T, R-C ladder, L-C coupled, transistor, operational amplifier, crystal

Frequency, stability, frequency drift, distortion, amplitude and wave shapes

LO4 Apply testing procedures to electronic devices and circuits

Testing procedures:

Measuring performance, using practical results and computer simulations Voltage gain, current, bandwidth, frequency response, output power, input and output impedance

Distortion and noise

Devices to test:

Semiconductors

Integrated circuits

Amplifiers

Oscillators

Filters

Power supplies

Integrated circuit (IC) voltage regulators

Combined analogue and digital IC's

Component manufacturer's data:

Specifications, manuals and circuit diagrams

Use of testing equipment: Meters, probes and oscilloscopes Signal generators and signal analysers, logic analysers

Virtual test equipment

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Determine the operational characteristics of amplifier circuits		D1 Assess the results obtained from the
 P1 Describe the types of amplifiers available and their applications P2 Examine the different performance characteristics of types of amplifier 	M1 Explain the results obtained from applying practical tests on an amplifier's performance	application of practical and virtual tests on amplifier circuits studied
LO2 Investigate the types and effects of feedback on an amplifier's performance		D2 Evaluate the results of practical and virtual
P3 Examine the types of feedback available and their effect on the amplifier's performance	M2 Perform practical tests to show the effect of feedback on an amplifier's performance	tests to analyse the effect of feedback on an amplifier's performance
P4 Describe a circuit which employs negative feedback		
LO3 Examine the operation and application of oscillators		D3 Analyse the results
P5 Examine types of available oscillators and their applications	M3 Assess the performance characteristics of types of oscillators	obtained from applying practical and virtual tests on oscillators studied

Pass	Merit	Distinction
LO4 Apply testing procedures to electronic devices and circuits		D4 Analyse and compare the results
P6 Select suitable electronic devices and their parent circuits and identify the appropriate manufacturer's data sheets	M4 Perform tests on electronic devices and circuits, recording results and recommending appropriate action	obtained from applying practical and virtual tests on devices and circuits studied
P7 Interpret relevant information from manufacturer's data when testing electronic devices and circuits		

Recommended Resources

Textbooks

BOYLESTAD, R.L. and NASHELSKY, L. (2013) *Electronic Devices and Circuit Theory*. 11th Ed. Pearson.

FLOYD, T.L. and BUCHLA, D. (2013) *Electronics Fundamentals: Circuits, Devices & Applications*. 8th Ed. Pearson.

HOROWITZ, P. and HILL, W. (2015) *The Art of Electronics*. 3rd Ed. Cambridge University Press.

Websites

www.electronics-tutorials.ws	Electronic Tutorials Amplifiers (Tutorials)
www.learnabout-electronics.org	Learn About Electronics Amplifiers (Tutorials)
www.learnabout-electronics.org	Learn About Electronics Oscillators (Tutorials)
www.electronics-tutorials.ws	Electronic Tutorials Oscillators (Tutorials)
http://learn.mikroe.com/	Mikro Elektronika Introduction to checking componants (E-Book)

Links

This unit links to the following related units: *Unit 43: Machines and Drives*