Unit 3:	Engineering Science
Unit code	T/615/1477
Unit type	Core
Unit level	4
Credit value	15

Introduction

Engineering is a discipline that uses scientific theory to design, develop or maintain structures, machines, systems, and processes. Engineers are therefore required to have a broad knowledge of the science that is applicable to the industry around them.

This unit introduces students to the fundamental laws and applications of the physical sciences within engineering and how to apply this knowledge to find solutions to a variety of engineering problems.

Among the topics included in this unit are: international system of units, interpreting data, static and dynamic forces, fluid mechanics and thermodynamics, material properties and failure, and A.C./D.C. circuit theories.

On successful completion of this unit students will be able to interpret and present qualitative and quantitative data using computer software, calculate unknown parameters within mechanical systems, explain a variety of material properties and use electromagnetic theory in an applied context.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Examine scientific data using both quantitative and qualitative methods.
- 2. Determine parameters within mechanical engineering systems.
- 3. Explore the characteristics and properties of engineering materials.
- 4. Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties.

Essential Content

LO1 Examine scientific data using both quantitative and qualitative methods

International system of units:

The basic dimensions in the physical world and the corresponding SI base units

SI derived units with special names and symbols

SI prefixes and their representation with engineering notation

Interpreting data:

Investigation using the scientific method to gather appropriate data

Test procedures for physical (destructive and non-destructive) tests and statistical tests that might be used in gathering information

Summarising quantitative and qualitative data with appropriate graphical representations

Using presentation software to present data to an audience

LO2 Determine parameters within mechanical engineering systems

Static and dynamic forces:

Representing loaded components with space and free body diagrams

Calculating support reactions of beams subjected to concentrated and distributed loads

Newton's laws of motion, D'Alembert's principle and the principle of conservation of energy

Fluid mechanics and thermodynamics:

Archimedes' principle and hydrostatics

Continuity of volume and mass flow for an incompressible fluid

Effects of sensible/latent heat of fluid

Heat transfer due to temperature change and the thermodynamic process equations

LO3 Explore the characteristics and properties of engineering materials

Material properties:

Atomic structure of materials and the structure of metals, polymers and composites

Mechanical and electromagnetic properties of materials

Material failure:

Destructive and non-destructive testing of materials

The effects of gradual and impact loading on a material.

Degradation of materials and hysteresis

LO4 Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties

D.C. circuit theory:

Voltage, current and resistance in D.C. networks

Exploring circuit theorems (Thevenin, Norton, Superposition), Ohm's law and Kirchhoff's voltage and current laws

A.C. circuit theory:

Waveform characteristics in a single-phase A.C. circuit

RLC circuits

Magnetism:

Characteristics of magnetic fields and electromagnetic force

The principles and applications of electromagnetic induction

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Examine scientific data using both quantitative and qualitative methods		D1 Analyse scientific data using both
P1 Describe SI units and prefix notation	M1 Explain how the application of scientific method impacts upon different test procedures	quantitative and qualitative methods
P2 Examine quantitative and qualitative data with appropriate graphical representations		
LO2 Determine parameters within mechanical engineering systems		D2 Compare how changes in the thermal
P3 Determine the support reactions of a beam carrying a combination of a concentrated load and a uniformly distributed load	M2 Determine unknown forces by applying d'Alembert's principle to a free body diagram	efficiency of a given system can affect its performance.
P4 Use Archimedes' principle in contextual engineering applications		
P5 Determine the effects of heat transfer on the dimensions of given materials		

Pass	Merit	Distinction
LO3 Explore the characteristics and properties of engineering materials		D3 Compare and contrast theoretical
P6 Describe the structural properties of metals and non-metals with reference to their material properties	M3 Review elastic and electromagnetic hysteresis in different materials	material properties of metals and non-metals with practical test data
P7 Explain the types of degradation found in metals and non-metals		
LO4 Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties		D4 Evaluate different techniques used to solve
P8 Calculate currents and voltages in D.C. circuits using circuit theorems	and applications of	problems on a combined series-parallel RLC circuit using A.C. theory.
P9 Describe how complex waveforms are produced from combining two or more sinusoidal waveforms.		
P10 Solve problems on series RLC circuits with A.C. theory.		

Recommended Resources

Textbooks

BIRD, J. (2012) Science for Engineering. 4th Ed. London: Routledge.

BOLTON, W. (2006) *Engineering Science*. 5th Ed. London: Routledge.

TOOLEY, M. and DINGLE, L. (2012) *Engineering Science: For Foundation Degree and Higher National*. London: Routledge.

Journals

International Journal of Engineering Science. International Journal of Engineering Science and Innovative Technology.

Websites

https://www.khanacademy.org/

Khan Academy Physics (Tutorials)

Links

This unit links to the following related units: Unit 9: Materials, Properties and Testing Unit 3: Engineering Science