Unit 6:	Mechatronics
Unit code	T/615/1480
Unit level	4
Credit value	15

Introduction

Auto-focus cameras, car cruise control and automated airport baggage handling systems are examples of mechatronic systems. Mechatronics is the combination of mechanical, electrical and computer/controlled engineering working together in automated systems and 'smart' product design.

Among the topics included in this unit are: consideration of component compatibility, constraints on size and cost, control devices used, British and/or European standards relevant to application, sensor types and interfacing, simulation and modelling software functions, system function and operation, advantages and disadvantages of software simulation, component data sheets, systems drawings, flowcharts, wiring and schematic diagrams.

On successful completion of this unit students will be able to explain the basic mechatronic system components and functions, design a simple mechatronic system specification for a given application, use appropriate simulation and modelling software to examine its operation and function, and solve faults on mechatronic systems using a range of techniques and methods.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Explain the design and operational characteristics of a mechatronic system.
- 2. Design a mechatronic system specification for a given application.
- 3. Examine the operation and function of a mechatronics system using simulation and modelling software.
- 4. Identify and correct faults in a mechatronic system.

Essential Content

LO1 Examine the design and operational characteristics of a mechatronic system

Origins and evolution: History and early development, evolution Practical examples and extent of use Current operational abilities and anticipated improvements Systems characteristics: Design of systems in an integrated way Sensor and transducer types used Consideration of component compatibility Constraints on size and cost Control device requirements and examples of applications

LO2 Design a mechatronic system specification for a given application

Systems specifications:

British and/or European standards relevant to application Sensor types and interfacing Actuator technology availability and selection Selection and use of appropriate control software/devices. Consideration of the interaction of system variables System commissioning parameters

LO3 Examine the operation and function of a mechatronics system using simulation and modelling software

Operation and functions:

Simulation and modelling software functions System function and operation Modes of operation simulation, loading and surges Advantages and disadvantage of software simulation

LO4 Identify and correct faults in a mechatronic system

Locating and correcting system faults:

Component data sheets, systems drawings, flowcharts, wiring and schematic diagrams

Original system correct function and operation

Inspection and testing using methodical fault location techniques and methods, use of control software to aid fault location

Identification, evaluation and verification of faults and their causes, rectification, final system testing and return to service

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Examine the design and operational characteristics of a mechatronic system		D1 Investigate an actual mechatronics system
P1 Describe the key components of a given mechatronics system P2 Identify the types of	M1 Explore how the mechatronics components operate as part of an integrated system	specification to propose alternative solutions
actuators, sensors and transducers used in the mechatronics system	M2 Investigate the methods of control used by mechatronics systems	
LO2 Design a mechatronic system specification for a given application		D2 Evaluate the operational capabilities
P3 Select the relevant sensor and the appropriate actuator technologies and produce a design specification suitable for these selections	M3 Justify the sensor and actuator technologies selected with reference to available alternatives	and limitations of the mechatronics system design specification produced
LO3 Examine the operation and function of a mechatronics system using simulation and modelling software		D3 Explain the function and operation of a simulated mechatronics
P4 Demonstrate industry standard mechatronics simulation/modelling software	M4 Describe the advantages and disadvantages of the software simulation	system

Pass	Merit	Distinction
LO4 Identify and correct faults in a mechatronic system		D4 Investigate the
 P5 Explain the safe use of fault finding test equipment P6 Locate and rectify faults on a mechatronic system 	M5 Apply and document the correct use of fault finding techniques/ methods	causes of faults on a mechatronics system and suggest alternatives to the design specification to improve reliability

Recommended Resources

Textbooks

BOLTON, W. (2015) *Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering*. 5th Ed. Essex: Pearson Education Limited.

MAHALIK, N.P. (2010) *Mechatronics: Principles, Concepts and Applications*. New Delhi: McGraw-Hill.

ONWUBOLU, G.C. (2005) *Mechatronics: Principles and Applications*. Oxford: Elsevier.

RAMACHANDRAN, K.P., VIJAYARAGHAVAN, G.K. and BALASUNDARAM, M.S. (2008) *Mechatronics: Integrated Mechanical Electronic Systems*. India: Wiley.

Journals

International Journal of Advanced Mechatronic Systems.

Links

This unit links to the following related units:

Unit 15: Automation, Robotics and Programmable Logic Controllers (PLCs)

Unit 54: Further Control Systems Engineering