Unit 63: Industrial Services Unit code K/615/1525 Unit level 5 Credit value 15 ### Introduction Behind the scenes in many modern-day manufacturing facilities there lies a complex system of services that powers production, both day and night. The underlying aim of this unit is to enhance the students' understanding of the electrical supply systems, industrial air compressors, steam services, refrigeration systems and heat pumps that are used in an array of industrial engineering environments. This broad-based methodology reflects the fact that operations engineering encompasses many disciplines and, as such, engineers must be conversant in the wide scope of service provision. The intention is to encourage students to develop a holistic approach to the design, operation, installation and maintenance of both industrial services and operating equipment. The student will be introduced to the fundamental principles of electrical power and lighting systems, the rudiments of industrial compressed air systems, the provision of steam for both power generation and process plant, and the applications and precepts of refrigeration plant and heat pumps. On successful completion of this unit students will be able to manage and maintain a wide range of commonly encountered industrial systems. ### **Learning Outcomes** By the end of this unit students will be able to: - 1. Apply the operating principles of electrical power and lighting systems. - 2. Investigate the applications and efficiency of industrial compressors. - 3. Discuss provision of steam services for process and power use. - 4. Review industrial refrigeration and heat pump systems. #### **Essential Content** ### LO1 Apply the operating principles of electrical power and lighting systems Electrical power: Construction, starting and speed control of polyphase induction motors Three-phase transformers: construction, clock number and group, parallel operation Electrical distribution: power system topologies, efficiency, power factor causes and correction, effect on cost of supplies, circuit protection Lighting systems: Lighting fundamentals: SI units, energy efficient circuit design and layout ### LO2 Investigate the applications and efficiency of industrial compressors *Industrial compressors:* Types and applications of industrial compressors Role of intercoolers, dryers and air receivers Efficiency and performance of air compressors Hazards and faults: safety consideration and associated legislation ### LO3 Discuss the provision of steam services for process and power use Steam power plant: Use of tables and charts to analyse wet and dry saturated steam Circuit diagrams showing steam raising plant Process steam: enthalpy of evaporation, available energy Overall plant efficiencies for process Power steam: superheated steam, turbine efficiency, Rankine cycle, cooling towers Overall plant efficiency for power Efficiencies and improvements ### LO4 Review industrial refrigeration and heat pump systems Heat pumps and refrigeration: Typical industrial heat pump and refrigeration systems Application of the second law of thermodynamics Reversed heat engines: reversed Carnot cycle Vapour compression cycle Refrigerant fluids: environmental impact Refrigeration tables and charts (p-h diagrams) Coefficient of performance for heat pumps and refrigerators # **Learning Outcomes and Assessment Criteria** | Pass | Merit | Distinction | |--|--|--| | LO1 Apply the operating principles of electrical power and lighting systems | | D1 Analyse the approaches available for reducing | | P1 Illustrate the construction and modes of connection of three-phase transformers P2 Discuss the applications and operating characteristics of polyphase induction motors | M1 Compare the economics of single-phase and three-phase distribution, and assess the methods of speed control applied to polyphase induction motors | electrical energy
consumption/costs in an
industrial production facility | | P3 Apply the principles of good lighting design to produce a lighting scheme for a given application | | | | LO2 Investigate the applications and efficiency of industrial compressors | | D2 Stating any assumptions, provide an explanatory | | P4 Compare three types of industrial compressor and identify justifiable applications for each P5 Review potential industrial compressor faults and hazards | M2 Calculate the isothermal and polytropic work of a reciprocating compressor and thus deduce the isothermal efficiency. Explain any discrepancies | derivation of the volumetric
efficiency formula for a
reciprocating compressor | | P6 Determine the performance characteristics of an industrial compressor | | | | Pass | Merit | Distinction | |--|---|---| | LO3 Discuss the provision of steam services for process and power use | | D3 Evaluate the modifications made to the | | P7 Demonstrate the need for superheated steam in a power generating plant P8 Discuss the requirements for process steam and determine overall plant efficiencies for steam process and power systems | M3 Illustrate why the
Rankine cycle is preferred
over the Carnot cycle in
steam production plants
around the world | basic steam raising systems
to improve their overall
efficiency | | LO4 Review industrial refrigeration and heat pump systems | | D4 Conduct a cost-benefit analysis on the installation | | P9 Discuss the operating principles of both heat pumps and industrial refrigeration systems P10 Calculate COP, heating effect and refrigeration effect of reversed heat engines, making use of refrigeration tables and pressure/enthalpy charts | M4 Assess the limiting factors that impact on the economics of heat pumps M5 Discuss the apparent contradiction between refrigeration cycles and the second law | of a ground source heat
pump on a smallholding.
Present your findings in the
form of academic
poster/presentation | ### **Recommended resources** ### **Textbooks** CIBSE. (2002) Code for lighting. Butterworth-Heinemann. DUNN, D. (2001) Fundamental Engineering Thermodynamics. Longman. EASTOP, T.D. and MCCONKEY, A. (1996) *Applied Thermodynamics for Engineering Technologists*. 5th Ed. Prentice Hall. HUGHES, A. (2013) *Electric Motors and Drives: Fundamentals, Types and Applications.* 4th Ed. Newnes. ROGERS, G.F.C. and MAYHEW, Y.R. (1994) *Thermodynamic and Transport Properties of Fluids: S. I. Units*. 5th Ed. Wiley-Blackwell. #### **Websites** http://www.freestudy.co.uk Free Study (Tutorials) #### Links This unit links to the following related units: Unit 13: Fundamentals of Thermodynamics and Heat Engines *Unit 38: Further Thermodynamics* *Unit 64: Thermofluids*