

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

463

Unit 4061: Programming for Engineers

Unit Code: A/650/2923

Level: 4

Credits: 15

Introduction

With the increasing programmability of devices, it is essential that engineers can
define and develop software artefacts. Engineers are often involved in developing
programs for a wide variety of projects, such as creating firmware, automating robots
and machines, modelling conceptual designs, processing data, and developing
machine-learning models. By acquiring programming competencies, engineers
can meet these challenges, reap the benefits of customised designs, and develop
solutions to solve future engineering problems, thus enhancing their career
prospects.

This unit provides engineering students with a comprehensive introduction to
programming. Students will be able to investigate different software development
platforms, programming paradigms, programming languages (e.g. Python, C or C++),
and their engineering applications. They will gain the experience of going through
a standard development process; from setting requirements through to design,
implementation, testing and maintenance. The unit also covers program design,
structure, and syntax through project activities. Students will be assessed on
creating programs that are efficient, functional, reliable, and maintainable.

On completion of this unit, students will have acquired essential knowledge and skills
in programming using a popular language that can be utilised in Level 5 units such as
Machine Learning and Embedded Systems.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

464

Learning Outcomes

By the end of this unit students will be able to:

LO1 Discuss key aspects of software evolution and development in the context of
engineering applications

LO2 Design a programming solution for an engineering problem

LO3 Implement a programming solution for an engineering problem

LO4 Perform testing of the programming solution to meet defined requirements
and to ensure high-quality outputs.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

465

Essential Content

LO1 Discuss key aspects of software evolution and development in the context
of engineering applications

Programming in engineering:

Evolution of programming concepts; paradigms (e.g. object-oriented, event-
driven, procedural, functional); development platforms including IDEs;
current/future trends

Processes/components of programming environment (i.e. microcomputer
hardware: CPU, arithmetic logic unit (ALU), registers, memory; fetch-execute
cycles)

Devices/systems that can be programmed (e.g. computers, mobile phones,
tablets, industrial controllers, field-programmable gate arrays (FPGAs))

Programming languages and platforms with which to program devices/systems
(e.g. Python, C, C++, C#, ADA, Java and MATLAB); comparisons (e.g. compiled
versus interpreted languages).

Engineering applications and practical skills:

Project-based learning (PBL) approach for understanding planning, development
and delivery of small/medium-sized engineering applications

Software engineering principles, software development life cycle, methodologies
(e.g. agile, waterfall), roles and responsibilities of a development team (e.g.
analyst, programmer, tester, Scrum master, product owner), modelling and
prototyping. Overview of Engineering project management techniques for
programmers (e.g. SWOT, stakeholder matrices, risk mapping, radar chart
and summary risk profiles).

Edit, execute and test example engineering applications

Developer attributes: responsibility towards planning and prioritisation of
development activities in meeting business needs, ability to work independently,
pro-active, initiative, communicative, keen to analyse root cause of problems,
contextual knowledge and skills for practice, solve and develop efficient and
ethical solutions

Programming case studies:

Embedded systems, automation, Industry 4.0, machine learning (AI), networking,
Internet of Things (e.g. smart factories), cloud computing, cybersecurity;
concepts, purpose and application

Industry relevance (e.g. manufacturing, defence, medical, automotive,
aeronautics, space technologies, utilities, consumer goods)

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

466

Occupation-centric: programming tools for diagnostics (e.g. web-based
diagnostics for network devices and other software tools such as PROFITrace),
interconnected occupational competencies (e.g. network engineers to bring
together programming skills and network installation and management skills
to solve problems).

Best practices:

Coding standards, secure programming, green coding, programmer ethics,
accessibility.

LO2 Design a programming solution for an engineering problem

Program design, structure and maintenance:

Requirements analysis and specification, flow and function charts, pseudocode,
selection and application of design methodology, design for testing and
maintenance, occupational role and relevance in designing maintainable
software solutions (e.g. use of software tools/techniques for troubleshooting
network issues, securely isolate and debug faults, automate different aspects
of network maintenance)

Documentation of design (e.g. project name, description, version control such as
Git and commentary); reading, extracting and interpreting technical, business
related and other relevant documentation.

Programming features:

Data types and operators (i.e. integers, floating point, strings, characters,
Boolean, arithmetic, relational, logical, bitwise, assignment)

Data type qualifiers (e.g. mutable and immutable)

Classes and object-oriented programming (OOP) concepts (i.e. abstraction,
polymorphism, encapsulation, inheritance)

Data structures (i.e. arrays, lists, sets)

Control structures (i.e. decision, selection, and iterative statements)

Input/output (i.e. file reading and writing, standard I/O, databases)

Libraries (i.e. GUI, networking, logging)

Data management: cleaning data, producing statistical analysis of data.

Algorithmic design and development:

Example algorithms for engineering problems (e.g., path finding)

Design algorithms for a range of small engineering applications

Complexity analysis, Big-O notation.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

467

LO3 Implement a programming solution for an engineering problem

Benefits of modular design:

Development efficiency, maintainability, testability, reusability and debugging.

Declaring, defining and calling functions:

Naming, return type and arguments (parameters), function body

Passing data to and receiving data from functions, call functions by value,
and call by reference

Life cycle of variables in functions (e.g. global versus local, class versus instance)

Recursive functions.

Preprocessor directives:

Include, import statements, C header files, macro definitions, sharing between
multiple source files, #define, #ifndef statements

Python packages.

Program development and implementation:

Develop and implement small engineering applications using a suitable
programming language; develop documentation to industry standards and
style guides

Explore team approach to program development and delivery

Consider possible user-experience concerns and how these could be solved.

LO4 Perform testing of the programming solution to meet defined
requirements and to ensure high-quality outputs

Overview of testing:

Software testing frameworks and methodologies including functional (e.g. unit
testing, integration, system, acceptance) and non-functional (e.g. usability,
performance, security, compatibility) methods; tools and techniques to monitor
and enhance performance against requirements

Test environments

Continuous integration/continuous development (CI/CD) pipeline and continuous
testing.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

468

Approach to testing:

Relationship between test activities and program development activities; identify
elements that need to be tested; consider data that should be used to fully test
the program; match tests against the defined requirements (e.g. user, system);
use of test harnesses

Use of relevant test procedures: test plans, test techniques (e.g. open-box,
closed-box); testing documentation (e.g. reports, plans, checklists)

Overview of alpha and beta testing.

Debugging:

Use of debugger tools; documentation of the debugging process with reference
to watch lists, breakpoints, and tracing

Debugging the process to fix vulnerabilities, defects and bugs in code

Understand coding standards and their benefits when writing program code in a
team as well as for the individual.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

469

Learning Outcomes and Assessment Criteria

Pass Merit Distinction

LO1 Discuss key aspects of software evolution and
development in the context of engineering applications

P1 Discuss the key stages of
the software development life
cycle, including the roles and
responsibilities of team
members

P2 Present a choice of
programming languages and
development platforms for a
given engineering problem.

M1 Analyse the suitability
of any two specific
software life-cycle models
for a given engineering
problem.

D1 Evaluate industry-
recognised best practices
in using software life-cycle
models for engineering
problems.

LO2 Design a programming solution for an engineering
problem LO2, LO3 and LO4

P3 Produce an outline
requirements specification
for a given engineering
application

P4 Design a suitable
algorithmic solution for
the key requirements.

M2 Refine the
requirements specification
and a suitable design
solution to cover the full
set of requirements,
including modularity and
maintainability.

D2 Reflect on the design,
implementation, testing and
documentation aspects of
engineering programming
solutions, including use of
coding standards and why
it is necessary in a team as
well as for the individual.

LO3 Implement a programming solution for an engineering
problem

P5 Implement a given design
solution for an engineering
problem using an appropriate
programming language

P6 Demonstrate successful
execution of the developed
solution in a chosen
programming environment.

M3 Refine the
implemented solution
for modularity and
maintainability.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

470

Pass Merit Distinction

LO4 Perform testing of the programming solution to meet
defined requirements and to ensure high-quality outputs.

P7 Produce a test plan to
demonstrate whether the
program meets the key
requirements

P8 Perform tests on the
program against the key
requirements, resolving
any functional errors.

M4 Analyse the
effectiveness of testing,
including an explanation
of the choice of tests used

M5 Demonstrate the use
of debugging tools to
identify and correct errors
in a programming solution

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

471

Recommended Resources

This unit does not specify which programme language should be used to deliver this
content – this decision can be made by the academic staff.

Examples of languages that are used in industry are Python, C, C++, C#, ADA, Java,
and MATLAB but any language which will allow the student to achieve the Learning
Outcomes is acceptable.

Note: See HN Global for guidance on additional resources.

Print Resources

Bradley R. (2011) Programming for Engineers: A Foundational Approach to Learning C and
MATLAB. Springer.

Clough D.E. and Chapra S.C. (2023) Spreadsheet Problem Solving and Programming for
Engineers and Scientists (Hardback). Taylor & Francis Ltd.

Cyganek B. (2020) Introduction to Programming with C++ for Engineers. Wiley/IEEE Press.

Kenan A. (2020) Python for Mechanical & Aerospace Engineering.

Nagar S. (2017) Introduction to Python for Engineers and Scientists. Apress.

Sanchez J. and Canton M.P. (2017) Java Programming for Engineers (Hardback).
Taylor & Francis Ltd.

Sierra K., Bates B. and Gee T. (2022) Head First Java. 3rd Ed. O’Reilly Media.

Sola A. (2021) Hardcore Programming For Mechanical Engineers: Build Engineering
Applications from Scratch (Paperback). No Starch Press,US.

Wei-Bing J., Aizenman H., Espinel E.M.C., Gunnerson K. and Liu J. (2022) An Introduction
to Python Programming for Scientists and Engineers (Paperback). Cambridge University
Press.

Journals

Note: Example journals listed below provide a broad range of articles related to unit content and
those relevant for the qualification. Staff and students are encouraged to explore these journals
and any other suitable journals to support the development of academic study skills, and subject
specific knowledge and skills as part of unit level delivery.

Advances in Engineering Software

Computer Applications in Engineering Education

Journal of Computer Science and Control Systems

Programming Journal.

Unit Descriptors for the Pearson BTEC Higher Nationals Engineering Suite (2024)
Issue 3 – March 2024 © Pearson Education Limited 2024

472

Links

This unit links to the following related units:

Unit 5013: Embedded Systems

Unit 5047: Computer Architecture and Interfacing

Unit 5050: Machine Learning Systems and Programming.

